Search Results

Now showing 1 - 10 of 18
Loading...
Thumbnail Image
Item

Low resistance n-contact for UVC LEDs by a two-step plasma etching process

2020, Cho, H.K., Kang, J.H., Sulmoni, L., Kunkel, K., Rass, J., Susilo, N., Wernicke, T., Einfeldt, S., Kneissl, M.

The impact of plasma etching on the formation of low-resistance n-contacts on the AlGaN:Si current spreading layer during the chip fabrication of ultraviolet light-emitting diodes (UV LEDs) emitting at 265 nm is investigated. A two-step plasma etching process with a first rapid etching using BCl3/Cl2 gas mixture and a second slow etching step using pure Cl2 gas has been developed. The etching sequence provides smooth mesa side-walls and an n-AlGaN surface with reduced surface damage. Ohmic n-contacts with a contact resistivity of 3.5 10-4 Ωcm2 are obtained on Si-doped Al0.65Ga0.35N layers and the operating voltages of the UVC LEDs were reduced by 2 V for a current of 20 mA. © 2020 The Author(s). Published by IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Impact of the capture time on the series resistance of quantum-well diode lasers

2020, Boni, A., Wünsche, H.J., Wenzel, H., Crump, P.

Electrons and holes injected into a semiconductor heterostructure containing quantum wells are captured with a finite time. We show theoretically that this very fact can cause a considerable excess contribution to the series resistivity and this is one of the main limiting factors to higher efficiency for GaAs based high-power lasers. The theory combines a standard microscopic-based model for the capture-escape processes in the quantum well with a drift-diffusion description of current flow outside the quantum well. Simulations of five GaAs-based devices differing in their Al-content reveal the root-cause of the unexpected and until now unexplained increase of the series resistance with decreasing heat sink temperature measured recently. The finite capture time results in resistances in excess of the bulk layer resistances (decreasing with increasing temperature) from 1 mΩ up to 30 mΩ in good agreement with the experiment. © 2020 The Author(s). Published by IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Extruded polycarbonate/Di-Allyl phthalate composites with ternary conductive filler system for bipolar plates of polymer electrolyte membrane fuel cells

2019, Naji, Ahmed, Krause, Beate, Pötschke, Petra, Ameli, Amir

Here, we report multifunctional polycarbonate (PC)-based conductive polymer composites (CPCs) with outstanding performance manufactured by a simple extrusion process and intended for use in bipolar plate (BPP) applications in polymer electrolyte membrane (PEM) fuel cells. CPCs were developed using a ternary conductive filler system containing carbon nanotube (CNT), carbon fiber (CF), and graphite (G) and by introducing di-allyl phthalate (DAP) as a plasticizer to PC matrix. The samples were fabricated using twin-screw extrusion followed by compression molding and the microstructure, electrical conductivity, thermal conductivity, and mechanical properties were investigated. The results showed a good dispersion of the fillers with some degree of interconnection between dissimilar fillers. The addition of DAP enhanced the electrical conductivity and tensile strength of the CPCs. Due to its plasticizing effect, DAP reduced the processing temperature by 75 °C and facilitated the extrusion of CPCs with filler loads as high as 63 wt% (3 wt% CNT, 30 wt% CF, 30 wt% G). Consequently, CPCs with the through-plane electrical, in-plane electrical and thermal conductivities and tensile strength of 4.2 S cm-1, 34.3 S cm-1, 2.9 W m-1 K-1, and 75.4 MPa, respectively, were achieved. This combination of properties indicates the potential of PC-based composites enriched with hybrid fillers and plasticizers as an alternative material for BPP application.

Loading...
Thumbnail Image
Item

Terahertz quantum-cascade lasers for high-resolution absorption spectroscopy of atoms and ions in plasmas

2023, Lü, X., Röben, B., Biermann, K., Wubs, J.R., Macherius, U., Weltmann, K.-D., van Helden, J.H., Schrottke, L., Grahn, H.T.

We report on terahertz (THz) quantum-cascade lasers (QCLs) based on GaAs/AlAs heterostructures, which exhibit single-mode emission at 3.360, 3.921, and 4.745 THz. These frequencies are in close correspondence to fine-structure transitions of Al atoms, N+ ions, and O atoms, respectively. Due to the low electrical pump power of these THz QCLs, they can be operated in a mechanical cryocooler in continuous-wave mode, while a sufficient intrinsic tuning range of more than 5 GHz is maintained. The single-mode operation and the intrinsic tuning range of these THz QCLs allow for the application of these lasers as radiation sources for high-resolution absorption spectroscopy to determine the absolute densities of Al atoms, N+ ions, and O atoms in plasmas.

Loading...
Thumbnail Image
Item

Terahertz quantum-cascade lasers for high-resolution absorption spectroscopy of atoms and ions in plasmas

2023, Lü, X., Röben, B., Biermann, K., Wubs, J.R., Macherius, U., Weltmann, K.-D., van Helden, J.H., Schrottke, L., Grahn, H.T.

We report on terahertz (THz) quantum-cascade lasers (QCLs) based on GaAs/AlAs heterostructures, which exhibit single-mode emission at 3.360, 3.921, and 4.745 THz. These frequencies are in close correspondence to fine-structure transitions of Al atoms, N+ ions, and O atoms, respectively. Due to the low electrical pump power of these THz QCLs, they can be operated in a mechanical cryocooler in continuous-wave mode, while a sufficient intrinsic tuning range of more than 5 GHz is maintained. The single-mode operation and the intrinsic tuning range of these THz QCLs allow for the application of these lasers as radiation sources for high-resolution absorption spectroscopy to determine the absolute densities of Al atoms, N+ ions, and O atoms in plasmas.

Loading...
Thumbnail Image
Item

Transition to the quantum hall regime in InAs nanowire cross-junctions

2019, Gooth, Johannes, Borg, Mattias, Schmid, Heinz, Bologna, Nicolas, Rossell, Marta D., Wirths, Stephan, Moselund, Kirsten, Nielsch, Kornelius, Riel, Heike

We present a low-temperature electrical transport study on four-terminal ballistic InAs nanowire cross-junctions in magnetic fields aligned perpendicular to the cross-plane. Two-terminal longitudinal conductance measurements between opposing contact terminals reveal typical 1D conductance quantization at zero magnetic field. As the magnetic field is applied, the 1D bands evolve into hybrid magneto-electric sub-levels that eventually transform into Landau levels for the widest nanowire devices investigated (width = 100 nm). Hall measurements in a four-terminal configuration on these devices show plateaus in the transverse Hall resistance at high magnetic fields that scale with (ve 2 /h) -1 . e is the elementary charge, h denotes Planck's constant and v is an integer that coincides with the Landau level index determined from the longitudinal conductance measurements. While the 1D conductance quantization in zero magnetic field is fragile against disorder at the NW surface, the plateaus in the Hall resistance at high fields remain robust as expected for a topologically protected Quantum Hall phase. © 2019 IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Mode competition in broad-ridge-waveguide lasers

2020, Koester, J.-P., Putz, A., Wenzel, H., Wünsche, H.-J., Radziunas, M., Stephan, H., Wilkens, M., Zeghuzi, A., Knigge, A.

The lateral brightness achievable with high-power GaAs-based laser diodes having long and broad waveguides is commonly regarded to be limited by the onset of higher-order lateral modes. For the study of the lateral-mode competition two complementary simulation tools are applied, representing different classes of approximations. The first tool bases on a completely incoherent superposition of mode intensities and disregards longitudinal effects like spatial hole burning, whereas the second tool relies on a simplified carrier transport and current flow. Both tools yield agreeing power-current characteristics that fit the data measured for 5-23 µm wide ridges. Also, a similarly good qualitative conformance of the near and far fields is found. However, the threshold of individual modes, the partition of power between them at a given current, and details of the near and far fields show differences. These differences are the consequence of a high sensitivity of the mode competition to details of the models and of the device structure. Nevertheless, it can be concluded concordantly that the brightness rises with increasing ridge width irrespective of the onset of more and more lateral modes. The lateral brightness W mm-1at 10 MW cm-2 power density on the front facet of the investigated laser with widest ridge (23 µm) is comparable with best values known from much wider broad-area lasers. In addition, we show that one of the simulation tools is able to predict beam steering and coherent beam coupling without introducing any phenomenological coupling coefficient or asymmetries. © 2020 The Author(s). Published by IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

High-brightness broad-area diode lasers with enhanced self-aligned lateral structure

2020, Elatta, M., Brox, O., Della Casa, P., Maaßdorf, A., Martin, D., Wenzel, H., Knigge, A., Crump, P.

Broad-area diode lasers with increased brightness and efficiency are presented, which are fabricated using an enhanced self-aligned lateral structure by means of a two-step epitaxial growth process with an intermediate etching step. In this structure, current-blocking layers in the device edges ensure current confinement under the central stripe, which can limit the detrimental effects of current spreading and lateral carrier accumulation on beam quality. It also minimizes losses at stripe edges, thus lowering the lasing threshold and increasing conversion efficiency, while maintaining high polarization purity. In the first realization of this structure, the current block is integrated within an extreme-triple-asymmetric epitaxial design with a thin p-doped side, meaning that the distance between the current block and the active zone can be minimized without added process complexity. Using this configuration, enhanced self-aligned structure devices with 90 µm stripe width and 4 mm resonator length show up to 20% lower threshold current, 21% narrower beam waist, and slightly higher (1.03 ) peak efficiency in comparison to reference devices with the same dimensions, while slope, divergence angle and polarization purity remain almost unchanged. These results correspond to an increase in brightness by up to 25%, and measurement results of devices with varying stripe widths follow the same trend. © 2020 The Author(s). Published by IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Low-index quantum-barrier single-pass tapered semiconductor optical amplifiers for efficient coherent beam combining

2020, Albrodt, P., Niemeyer, M., Elattar, M., Hamperl, J., Blume, G., Ginolas, A., Fricke, J., Maaßdorf, A., Georges, P., Lucas-Leclin, G., Paschke, K., Crump, P.

The requirements for coherent combination of high power GaAs-based single-pass tapered amplifiers are studied. Changes to the epitaxial layer structure are shown to bring higher beam quality and hence improved combining efficiency for one fixed device geometry. Specifically, structures with large vertical near field and low wave-guiding from the active region show 10% higher beam quality and coherent combining efficiency than reference devices. As a result, coherent combining efficiency is shown to be limited by beam quality, being directly proportional to the power content in the central lobe across a wide range of devices with different construction. In contrast, changes to the in-plane structure did not improve beam quality or combining efficiency. Although poor beam quality does correlate with increased optical intensities near the input aperture, locating monolithically-integrated absorption regions in these areas did not lead to any performance improvement. However, large area devices with subsequently improved cooling do achieve higher output powers. Phase noise can limit coherent combining, but this is shown to be small and independent of device design. Overall, tapered amplifiers are well suited for high power coherent combining applications. © 2020 The Author(s). Published by IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

Micro Fresnel mirror array with individual mirror control

2020, Poyyathuruthy Bruno, Binal, Schütze, Robert, Grunwald, Ruediger, Wallrabe, Ulrike

We present the design and fabrication of a miniaturized array of piezoelectrically actuated high speed Fresnel mirrors with individual mirror control. These Fresnel mirrors can be used to generate propagation invariant and self-healing interference patterns. The mirrors are actuated using piezobimorph actuators, and the consequent change of the tilting angle of the mirrors changes the fringe spacing of the interference pattern generated. The array consists of four Fresnel mirrors each having an area of 2 × 2 mm2 arranged in a 2x2 configuration. The device, optimized using FEM simulations, is able to achieve maximum mirror deflections of 15 mrad, and has a resonance frequency of 28 kHz.