Search Results

Now showing 1 - 10 of 35
  • Item
    DDB-KG: The German Bibliographic Heritage in a Knowledge Graph
    (Aachen, Germany : RWTH Aachen, 2021) Tan, Mary Ann; Tietz, Tabea; Bruns, Oleksandra; Oppenlaender, Jonas; Dessì, Danilo; Harald, Sack; Sumikawa, Yasunobu; Ikejiri, Ryohei; Doucet, Antoine; Pfanzelter, Eva; Hasanuzzaman, Mohammed; Dias, Gaël; Milligan, Ian; Jatowt, Adam
    Under the German government’s initiative “NEUSTART Kultur”, the German Digital Library or Deutsche Digitale Bibliothek (DDB) is undergoing improvements to enhance user-experience. As an initial step, emphasis is placed on creating a knowledge graph from the bibliographic record collection of the DDB. This paper discusses the challenges facing the DDB in terms of retrieval and the solutions in addressing them. In particular, limitations of the current data model or ontology to represent bibliographic metadata is analyzed through concrete examples. This study presents the complete ontological mapping from DDB-Europeana Data Model (DDB-EDM) to FaBiO, and a prototype of the DDB-KG made available as a SPARQL endpoint. The suitabiliy of the target ontology is demonstrated with SPARQL queries formulated from competency questions.
  • Item
    Understanding Class Representations: An Intrinsic Evaluation of Zero-Shot Text Classification
    (Aachen, Germany : RWTH Aachen, 2021) Hoppe, Fabian; Dessì, Danilo; Sack, Harald; Alam, Mehwish; Buscaldi, Davide; Cochez, Michael; Osborne, Francesco; Reforgiato Recupero, Diego; Sack, Harald
    Frequently, Text Classification is limited by insufficient training data. This problem is addressed by Zero-Shot Classification through the inclusion of external class definitions and then exploiting the relations between classes seen during training and unseen classes (Zero-shot). However, it requires a class embedding space capable of accurately representing the semantic relatedness between classes. This work defines an intrinsic evaluation based on greater-than constraints to provide a better understanding of this relatedness. The results imply that textual embeddings are able to capture more semantics than Knowledge Graph embeddings, but combining both modalities yields the best performance.
  • Item
    Improving Zero-Shot Text Classification with Graph-based Knowledge Representations
    (Aachen, Germany : RWTH Aachen, 2022) Hoppe, Fabian; Hartig, Olaf; Seneviratne, Oshani
    Insufficient training data is a key challenge for text classification. In particular, long-tail class distributions and emerging, new classes do not provide any training data for specific classes. Therefore, such a zeroshot setting must incorporate additional, external knowledge to enable transfer learning by connecting the external knowledge of previously unseen classes to texts. Recent zero-shot text classifier utilize only distributional semantics defined by large language models and based on class names or natural language descriptions. This implicit knowledge contains ambiguities, is not able to capture logical relations nor is it an efficient representation of factual knowledge. These drawbacks can be avoided by introducing explicit, external knowledge. Especially, knowledge graphs provide such explicit, unambiguous, and complementary, domain specific knowledge. Hence, this thesis explores graph-based knowledge as additional modality for zero-shot text classification. Besides a general investigation of this modality, the influence on the capabilities of dealing with domain shifts by including domain-specific knowledge is explored.
  • Item
    Ontology Modelling for Materials Science Experiments
    (Aachen, Germany : RWTH Aachen, 2021) Alam, Mehwish; Birkholz, Henk; Dessì, Danilo; Eberl, Christoph; Fliegl, Heike; Gumbsch, Peter; von Hartrott, Philipp; Mädler, Lutz; Niebel, Markus; Sack, Harald; Thomas, Akhil; Tiddi, Ilaria; Maleshkova, Maria; Pellegrini, Tassilo; de Boer, Victor
    Materials are either enabler or bottleneck for the vast majority of technological innovations. The digitization of materials and processes is mandatory to create live production environments which represent physical entities and their aggregations and thus allow to represent, share, and understand materials changes. However, a common standard formalization for materials knowledge in the form of taxonomies, ontologies, or knowledge graphs has not been achieved yet. This paper sketches the e_orts in modelling an ontology prototype to describe Materials Science experiments. It describes what is expected from the ontology by introducing a use case where a process chain driven by the ontology enables the curation and understanding of experiments.
  • Item
    Formalizing Gremlin pattern matching traversals in an integrated graph Algebra
    (Aachen, Germany : RWTH Aachen, 2019) Thakkar, Harsh; Auer, Sören; Vidal, Maria-Esther; Samavi, Reza; Consens, Mariano P.; Khatchadourian, Shahan; Nguyen, Vinh; Sheth, Amit; Giménez-García, José M.; Thakkar, Harsh
    Graph data management (also called NoSQL) has revealed beneficial characteristics in terms of flexibility and scalability by differ-ently balancing between query expressivity and schema flexibility. This peculiar advantage has resulted into an unforeseen race of developing new task-specific graph systems, query languages and data models, such as property graphs, key-value, wide column, resource description framework (RDF), etc. Present-day graph query languages are focused towards flex-ible graph pattern matching (aka sub-graph matching), whereas graph computing frameworks aim towards providing fast parallel (distributed) execution of instructions. The consequence of this rapid growth in the variety of graph-based data management systems has resulted in a lack of standardization. Gremlin, a graph traversal language, and machine provide a common platform for supporting any graph computing sys-tem (such as an OLTP graph database or OLAP graph processors). In this extended report, we present a formalization of graph pattern match-ing for Gremlin queries. We also study, discuss and consolidate various existing graph algebra operators into an integrated graph algebra.
  • Item
    SHACL Constraint Validation during SPARQL Query Processing
    (Aachen, Germany : RWTH Aachen, 2021) Rohde, Phlipp D.
    The importance of knowledge graphs is increasing. Due to their application in more and more real-world use-cases the data quality issue has to be addressed. The Shapes Constraint Language (SHACL) is the W3C recommendation language for defining integrity constraints over knowledge graphs expressed in the Resource Description Framework (RDF). Annotating SPARQL query results with metadata from the SHACL validation provides a better understanding of the knowledge graph and its data quality. We propose a query engine that is able to efficiently evaluate which instances in the knowledge graph fulfill the requirements from the SHACL shape schema and annotate the SPARQL query result with this metadata. Hence, adding the dimension of explainability to SPARQL query processing. Our preliminary analysis shows that the proposed optimizations performed for SHACL validation during SPARQL query processing increase the performance compared to a naive approach. However, in some queries the naive approach outperforms the optimizations. This shows that more work needs to be done in this topic to fully comprehend all impacting factors and to identify the amount of overhead added to the query execution.
  • Item
    Steps towards a Dislocation Ontology for Crystalline Materials
    (Aachen, Germany : RWTH Aachen, 2021) Ihsan, Ahmad Zainul; Dessì, Danilo; Alam, Mehwish; Sack, Harald; Sandfeld, Stefan; García-Castro, Raúl; Davies, John; Antoniou, Grigoris; Fortuna, Carolina
    The field of Materials Science is concerned with, e.g., properties and performance of materials. An important class of materials are crystalline materials that usually contain “dislocations" - a line-like defect type. Dislocation decisively determine many important materials properties. Over the past decades, significant effort was put into understanding dislocation behavior across different length scales both with experimental characterization techniques as well as with simulations. However, for describing such dislocation structures there is still a lack of a common standard to represent and to connect dislocation domain knowledge across different but related communities. An ontology offers a common foundation to enable knowledge representation and data interoperability, which are important components to establish a “digital twin". This paper outlines the first steps towards the design of an ontology in the dislocation domain and shows a connection with the already existing ontologies in the materials science and engineering domain.
  • Item
    On the Role of Images for Analyzing Claims in Social Media
    (Aachen, Germany : RWTH Aachen, 2021) Cheema, Gullal S.; Hakimov, Sherzod; Müller-Budack, Eric; Ewerth, Ralph
    Fake news is a severe problem in social media. In this paper, we present an empirical study on visual, textual, and multimodal models for the tasks of claim, claim check-worthiness, and conspiracy detection, all of which are related to fake news detection. Recent work suggests that images are more influential than text and often appear alongside fake text. To this end, several multimodal models have been proposed in recent years that use images along with text to detect fake news on social media sites like Twitter. However, the role of images is not well understood for claim detection, specifically using transformer-based textual and multimodal models. We investigate state-of-the-art models for images, text (Transformer-based), and multimodal information for four different datasets across two languages to understand the role of images in the task of claim and conspiracy detection.
  • Item
    Mathematics in Wikidata
    (Aachen, Germany : RWTH Aachen, 2021) Scharpf, Philipp; Schubotz, Moritz; Gipp, Bela; Kaffee, Lucie-Aimée; Razniewski, Simon; Hogan, Aidan
    Documents from Science, Technology, Engineering, and Mathematics (STEM) disciplines usually contain a signicant amount of mathematical formulae alongside text. Some Mathematical Information Retrieval (MathIR) systems, e.g., Mathematical Question Answering (MathQA), exploit knowledge from Wikidata. Therefore, the mathematical information needs to be stored in items. In the last years, there have been efforts to define several properties and seed formulae together with their constituting identifiers into Wikidata. This paper summarizes the current state, challenges, and discussions related to this endeavor. Furthermore, some data mining methods (supervised formula annotation and concept retrieval) and applications (question answering and classification explainability) of the mathematical information are outlined. Finally, we discuss community feedback and issues related to integrating Mathematical Entity Linking (MathEL) into Wikidata and Wikipedia, which was rejected in 33% and 12% of the test cases, for Wikidata and Wikipedia respectively. Our long-term goal is to populate Wikidata, such that it can serve a variety of automated math reasoning tasks and AI systems.
  • Item
    Detecting Cross-Language Plagiarism using Open Knowledge Graphs
    (Aachen, Germany : RWTH Aachen, 2021) Stegmüller, Johannes; Bauer-Marquart, Fabian; Meuschke, Norman; Ruas, Terry; Schubotz, Moritz; Gipp, Bela; Zhang, Chengzhi; Mayr, Philipp; Lu, Wie; Zhang, Yi
    Identifying cross-language plagiarism is challenging, especially for distant language pairs and sense-for-sense translations. We introduce the new multilingual retrieval model Cross-Language Ontology-Based Similarity Analysis (CL-OSA) for this task. CL-OSA represents documents as entity vectors obtained from the open knowledge graph Wikidata. Opposed to other methods, CL-OSA does not require computationally expensive machine translation, nor pre-training using comparable or parallel corpora. It reliably disambiguates homonyms and scales to allow its application toWebscale document collections. We show that CL-OSA outperforms state-of-the-art methods for retrieving candidate documents from five large, topically diverse test corpora that include distant language pairs like Japanese-English. For identifying cross-language plagiarism at the character level, CL-OSA primarily improves the detection of sense-for-sense translations. For these challenging cases, CL-OSA’s performance in terms of the well-established PlagDet score exceeds that of the best competitor by more than factor two. The code and data of our study are openly available.