Search Results

Now showing 1 - 10 of 47
  • Item
    On Indecomposable Polyhedra and the Number of Steiner Points
    (Amsterdam [u.a.] : Elsevier, 2015) Goerigk, Nadja; Si, Hang
    The existence of indecomposable polyhedra, that is, the interior of every such polyhedron cannot be decomposed into a set of tetrahedra whose vertices are all of the given polyhedron, is well-known. However, the geometry and combinatorial structure of such polyhedra are much less studied. In this article, we investigate the structure of some well-known examples, the so-called Schönhardt polyhedron [10] and the Bagemihl's generalization of it [1], which will be called Bagemihl's polyhedra. We provide a construction of an additional point, so-called Steiner point, which can be used to decompose the Schönhardt and the Bagemihl's polyhedra. We then provide a construction of a larger class of three-dimensional indecomposable polyhedra which often appear in grid generation problems. We show that such polyhedra have the same combinatorial structure as the Schönhardt's and Bagemihl's polyhedra, but they may need more than one Steiner point to be decomposed. Given such a polyhedron with n ≥ 6 vertices, we show that it can be decomposed by adding at most interior Steiner points. We also show that this number is optimal in theworst case.
  • Item
    Evaluation of Expert Reports to Quantify the Exploration Risk for Geothermal Projects in Germany
    (Amsterdam [u.a.] : Elsevier, 2015) Ganz, Britta; Ask, Maria; Hangx, Suzanne; Bruckman, Viktor; Kühn, Michael
    The development of deep geothermal energy sources in Germany still faces many uncertainties and high upfront investment costs. Methodical approaches to assess the exploration risk are thus of major importance for geothermal project development. Since 2002, expert reports to quantify the exploration risk for geothermal projects in Germany were carried out. These reports served as a basis for insurance contracts covering the exploration risk. Using data from wells drilled in the meantime, the reports were evaluated and the stated probabilities compared with values actually reached.
  • Item
    Temporal Role Annotation for Named Entities
    (Amsterdam [u.a.] : Elsevier, 2018) Koutraki, Maria; Bakhshandegan-Moghaddam, Farshad; Sack, Harald; Fensel, Anna; de Boer, Victor; Pellegrini, Tassilo; Kiesling, Elmar; Haslhofer, Bernhard; Hollink, Laura; Schindler, Alexander
    Natural language understanding tasks are key to extracting structured and semantic information from text. One of the most challenging problems in natural language is ambiguity and resolving such ambiguity based on context including temporal information. This paper, focuses on the task of extracting temporal roles from text, e.g. CEO of an organization or head of a state. A temporal role has a domain, which may resolve to different entities depending on the context and especially on temporal information, e.g. CEO of Microsoft in 2000. We focus on the temporal role extraction, as a precursor for temporal role disambiguation. We propose a structured prediction approach based on Conditional Random Fields (CRF) to annotate temporal roles in text and rely on a rich feature set, which extracts syntactic and semantic information from text. We perform an extensive evaluation of our approach based on two datasets. In the first dataset, we extract nearly 400k instances from Wikipedia through distant supervision, whereas in the second dataset, a manually curated ground-truth consisting of 200 instances is extracted from a sample of The New York Times (NYT) articles. Last, the proposed approach is compared against baselines where significant improvements are shown for both datasets.
  • Item
    Pulsed-field Invasion to HTS Bulk Magnets Grown from Two Seeds with Varied Seed-crystal Positions and Numbers
    (Amsterdam [u.a.] : Elsevier, 2014) Oka, T.; Yamada, Y.; Horiuchi, T.; Ogawa, J.; Fukui, S.; Sato, T.; Yokoyama, K.; Langer, M.
    The flux-invasion behavior into the melt-processed Y-Ba-Cu-O bulk magnets were precisely measured and analyzed during and after their pulsed-field magnetization processes operated at 30.6 K. The materials were fabricated as the bulk monoliths grown by adopting two seed-crystals, or shifting the seed-crystal positions from the centre of the sample surface, which exhibited the magnetically single-domain distributions. Although the performances of the trapped flux density after activations showed no obvious differences, the flux started invading into the sample bearing two seeds obviously at lower fields than those of normally-grown isotropic crystal. Since the flux penetration behavior were thus clearly different between the samples with the structure grown from two seeds and uniformly grown samples with a seed crystal, it is suggested that the structure results in an effective magnetizing method with less heating than those of conventional samples, which results in the higher performance of field trapping in the bulk magnets than usual.
  • Item
    On Tetrahedralisations Containing Knotted and Linked Line Segments
    (Amsterdam [u.a.] : Elsevier, 2017) Si, Hang; Ren, Yuxue; Lei, Na; Gu, Xianfeng
    This paper considers a set of twisted line segments in 3d such that they form a knot (a closed curve) or a link of two closed curves. Such line segments appear on the boundary of a family of 3d indecomposable polyhedra (like the Schönhardt polyhedron) whose interior cannot be tetrahedralised without additional vertices added. On the other hand, a 3d (non-convex) polyhedron whose boundary contains such line segments may still be decomposable as long as the twist is not too large. It is therefore interesting to consider the question: when there exists a tetrahedralisation contains a given set of knotted or linked line segments? In this paper, we studied a simplified question with the assumption that all vertices of the line segments are in convex position. It is straightforward to show that no tetrahedralisation of 6 vertices (the three-line-segments case) can contain a trefoil knot. Things become interesting when the number of line segments increases. Since it is necessary to create new interior edges to form a tetrahedralisation. We provided a detailed analysis for the case of a set of 4 line segments. This leads to a crucial condition on the orientation of pairs of new interior edges which determines whether this set is decomposable or not. We then prove a new theorem about the decomposability for a set of n (n ≥ 3) knotted or linked line segments. This theorem implies that the family of polyhedra generalised from the Schonhardt polyhedron by Rambau [1] are all indecomposable.
  • Item
    Formation dynamics of ultra-short laser induced micro-dots in the bulk of transparent materials
    (Amsterdam [u.a.] : Elsevier, 2013) Mermillod-Blondin, A.; Ashkenasi, D.; Lemke, A.; Schwagmeier, M.; Rosenfeld, A.
    In this paper, we study the formation dynamics of ultra-short laser-induced micro dots under the surface of transparent materials. Laser-induced micro dots find their application in direct part marking, to address full life cycle traceability. We first demonstrate the possibility of direct laser part marking into the cladding of an optical fiber. Then, we monitor the laser affected zone with the help of a time-resolved phase contrast microscopy setup in a fused silica substrate. We show that the transient energy relaxation processes affect the host material over a region that exceeds the micro dot size by several micrometers.
  • Item
    Measurements of Streams Agitated by Fluid Loaded SAW-devices Using a Volumetric 3-component Measurement Technique (V3V)
    (Amsterdam [u.a.] : Elsevier, 2015) Kiebert, Florian; König, Jörg; Kykal, Carsten; Schmidt, Hagen
    Utilizing surface acoustic waves (SAW) to induce tailored fluid motion via the acoustic streaming requires detailed knowledge about the acoustic bulk wave excitation. For the first time, the Defocus Digital Particle Image Velocimetry is used to measure the fluid motion originating from a fluid loaded SAW-device. With this flow measurement technique, the acoustic streaming-induced fluid motion can be observed volumetrically, which is attractive not only for application, but also for simulation in order to gain deeper insights regarding three-dimensional acoustic effects.
  • Item
    On Tetrahedralisations of Reduced Chazelle Polyhedra with Interior Steiner Points
    (Amsterdam [u.a.] : Elsevier, 2016) Si, Hang; Goerigk, Nadja
    The non-convex polyhedron constructed by Chazelle, known as the Chazelle polyhedron [4], establishes a quadratic lower bound on the minimum number of convex pieces for the 3d polyhedron partitioning problem. In this paper, we study the problem of tetrahedralising the Chazelle polyhedron without modifying its exterior boundary. It is motivated by a crucial step in tetrahedral mesh generation in which a set of arbitrary constraints (edges or faces) need to be entirely preserved. The goal of this study is to gain more knowledge about the family of 3d indecomposable polyhedra which needs additional points, so-called Steiner points, to be tetrahedralised. The requirement of only using interior Steiner points for the Chazelle polyhedron is extremely challenging. We first “cut off” the volume of the Chazelle polyhedron by removing the regions that are tetrahedralisable. This leads to a 3d non-convex polyhedron whose vertices are all in the two slightly shifted saddle surfaces which are used to construct the Chazelle polyhedron. We call it the reduced Chazelle polyhedron. It is an indecomposable polyhedron. We then give a set of (N + 1)2 interior Steiner points that ensures the existence of a tetrahedralisation of the reduced Chazelle polyhedron with 4(N + 1) vertices. The proof is done by transforming a 3d tetrahedralisation problem into a 2d edge flip problem. In particular, we design an edge splitting and flipping algorithm and prove that it gives to a tetrahedralisation of the reduced Chazelle polyhedron.
  • Item
    Modelling of a radio frequency plasma bridge neutralizer (RFPBN)
    (Amsterdam [u.a.] : Elsevier, 2017) Scholze, F.; Eichhorn, C.; Bundesmann, C.; Spemann, D.; Neumann, H.; Bulit, A.; Feili, D.; Gonzalez del Amo, J.
    A performance model of a radio frequency plasma bridge neutralizer was developed to calculate the electrical parameters and optimize the neutralizer design. Minimization of power losses and gas consumption, and a maximization of the neutralizer lifetime and the reliability of the system are requirements of all electric propulsion concepts and strongly determine their future application. The requirements of the neutralizer depend on mission profiles.
  • Item
    Optimization of the energy deposition in glasses with temporally-shaped femtosecond laser pulses
    (Amsterdam [u.a.] : Elsevier, 2011) Mauclair, C.; Mishchik, K.; Mermillod-Blondin, A.; Rosenfeld, A.; Hertel, I.V.; Audouard, E.; Stoian, R.
    Bulk machining of glasses with femtosecond laser pulses enables the fabrication of embedded optical functions. Due to the nonlinear character of the laser-matter interaction, structural modifications can occur within the focal region. To reach a full control of the process, ways of controlling the deposition of the laser energy inside the material have to be unveiled. From static and time-resolved pictures of bulk-excitation of a-SiO2 and borosilicate glass, we show that particular laser temporal shapes such as picosecond sequences can better confine the energy deposition than the femtosecond sequence by reducing the propagation artifacts.