Search Results

Now showing 1 - 10 of 203
  • Item
    Temporal Role Annotation for Named Entities
    (Amsterdam [u.a.] : Elsevier, 2018) Koutraki, Maria; Bakhshandegan-Moghaddam, Farshad; Sack, Harald; Fensel, Anna; de Boer, Victor; Pellegrini, Tassilo; Kiesling, Elmar; Haslhofer, Bernhard; Hollink, Laura; Schindler, Alexander
    Natural language understanding tasks are key to extracting structured and semantic information from text. One of the most challenging problems in natural language is ambiguity and resolving such ambiguity based on context including temporal information. This paper, focuses on the task of extracting temporal roles from text, e.g. CEO of an organization or head of a state. A temporal role has a domain, which may resolve to different entities depending on the context and especially on temporal information, e.g. CEO of Microsoft in 2000. We focus on the temporal role extraction, as a precursor for temporal role disambiguation. We propose a structured prediction approach based on Conditional Random Fields (CRF) to annotate temporal roles in text and rely on a rich feature set, which extracts syntactic and semantic information from text. We perform an extensive evaluation of our approach based on two datasets. In the first dataset, we extract nearly 400k instances from Wikipedia through distant supervision, whereas in the second dataset, a manually curated ground-truth consisting of 200 instances is extracted from a sample of The New York Times (NYT) articles. Last, the proposed approach is compared against baselines where significant improvements are shown for both datasets.
  • Item
    The Research Core Dataset (KDSF) in the Linked Data context
    (Amsterdam [u.a.] : Elsevier, 2019) Walther, Tatiana; Hauschke, Christian; Kasprzik, Anna; Sicilia, Miguel-Angel; Simons, Ed; Clements, Anna; de Castro, Pablo; Bergström, Johan
    This paper describes our efforts to implement the Research Core Dataset (“Kerndatensatz Forschung”; KDSF) as an ontology in VIVO. KDSF is used in VIVO to record the required metadata on incoming data and to produce reports as an output. While both processes need an elaborate adaptation of the KDSF specification, this paper focusses on the adaptation of the KDSF basic data model for recording data in VIVO. In this context, the VIVO and KDSF ontologies were compared with respect to domain, syntax, structure, and granularity in order to identify correspondences and mismatches. To produce an alignment, different matching approaches have been applied. Furthermore, we made necessary modifications and extensions on KDSF classes and properties.
  • Item
    Biomaterial based strategies to reconstruct the nigrostriatal pathway in organotypic slice co-cultures
    (Amsterdam [u.a.] : Elsevier, 2021) Ucar, Buket; Kajtez, Janko; Foidl, Bettina M.; Eigel, Dimitri; Werner, Carsten; Long, Katherine R.; Emnéus, Jenny; Bizeau, Joëlle; Lomora, Mihai; Pandit, Abhay; Newland, Ben; Humpel, Christian
    Protection or repair of the nigrostriatal pathway represents a principal disease-modifying therapeutic strategy for Parkinson's disease (PD). Glial cell line-derived neurotrophic factor (GDNF) holds great therapeutic potential for PD, but its efficacious delivery remains difficult. The aim of this study was to evaluate the potential of different biomaterials (hydrogels, microspheres, cryogels and microcontact printed surfaces) for reconstructing the nigrostriatal pathway in organotypic co-culture of ventral mesencephalon and dorsal striatum. The biomaterials (either alone or loaded with GDNF) were locally applied onto the brain co-slices and fiber growth between the co-slices was evaluated after three weeks in culture based on staining for tyrosine hydroxylase (TH). Collagen hydrogels loaded with GDNF slightly promoted the TH+ nerve fiber growth towards the dorsal striatum, while GDNF loaded microspheres embedded within the hydrogels did not provide an improvement. Cryogels alone or loaded with GDNF also enhanced TH+ fiber growth. Lines of GDNF immobilized onto the membrane inserts via microcontact printing also significantly improved TH+ fiber growth. In conclusion, this study shows that various biomaterials and tissue engineering techniques can be employed to regenerate the nigrostriatal pathway in organotypic brain slices. This comparison of techniques highlights the relative merits of different technologies that researchers can use/develop for neuronal regeneration strategies. © 2020
  • Item
    Evaluation of Expert Reports to Quantify the Exploration Risk for Geothermal Projects in Germany
    (Amsterdam [u.a.] : Elsevier, 2015) Ganz, Britta; Ask, Maria; Hangx, Suzanne; Bruckman, Viktor; Kühn, Michael
    The development of deep geothermal energy sources in Germany still faces many uncertainties and high upfront investment costs. Methodical approaches to assess the exploration risk are thus of major importance for geothermal project development. Since 2002, expert reports to quantify the exploration risk for geothermal projects in Germany were carried out. These reports served as a basis for insurance contracts covering the exploration risk. Using data from wells drilled in the meantime, the reports were evaluated and the stated probabilities compared with values actually reached.
  • Item
    Influence of molecular weight of polycation polydimethyldiallylammonium and carbon nanotube content on electric conductivity of layer-by-layer films
    (Amsterdam [u.a.] : Elsevier, 2022) Neuber, Sven; Sill, Annekatrin; Efthimiopoulos, Ilias; Nestler, Peter; Fricke, Katja; Helm, Christiane A.
    For biological and engineering applications, nm-thin films with high electrical conductivity and tunable sheet resistance are desirable. Multilayers of polydimethyldiallylammonium chloride (PDADMA) with two different molecular weights (322 and 44.3 kDa) and oxidized carbon nanotubes (CNTs) were constructed using the layer-by-layer technique. The surface coverage of the CNTs was monitored with a selected visible near infrared absorption peak. Both the film thickness and the surface coverage of the CNTs increased linearly with the number of CNT/PDADMA bilayers deposited (film thickness up to 80 nm). Atomic force microscopy images showed a predominantly surface-parallel orientation of CNTs. Ohmic behavior with constant electrical conductivity of each CNT/PDADMA film and conductivity up to 4 · 103 S/m was found. A change in PDADMA molecular weight by almost a factor of ten has no effect on the film thickness and electrical conductivity, only the film/air roughness is reduced. However, increasing CNT concentration in the deposition dispersion from 0.15 up to 0.25 mg/ml results in an increased thickness of a CNT/PDADMA bilayer (by a factor of three). The increased bilayer thickness is accompanied by a decreased electrical conductivity (by a factor of four). The decreased conductivity is attributed to the increased monomer/CNT ratio.
  • Item
    Nitrous oxide emissions from winter oilseed rape cultivation
    (Amsterdam [u.a.] : Elsevier, 2017) Ruser, Reiner; Fuß, Roland; Andres, Monique; Hegewald, Hannes; Kesenheimer, Katharina; Köbke, Sarah; Räbiger, Thomas; Quinones, Teresa Suarez; Augustin, Jürgen; Christen, Olaf; Dittert, Klaus; Kage, Henning; Lewandowski, Iris; Prochnow, Annette; Stichnothe, Heinz; Flessa, Heinz
    Winter oilseed rape (Brassica napus L., WOSR) is the major oil crop cultivated in Europe. Rapeseed oil is predominantly used for production of biodiesel. The framework of the European Renewable Energy Directive requires that use of biofuels achieves GHG savings of at least 50% compared to use of fossil fuel starting in 2018. However, N2O field emissions are estimated using emission factors that are not specific for the crop and associated with strong uncertainty. N2O field emissions are controlled by N fertilization and dominate the GHG balance of WOSR cropping due to the high global warming potential of N2O. Thus, field experiments were conducted to increase the data basis and subsequently derive a new WOSR-specific emission factor. N2O emissions and crop yields were monitored for three years over a range of N fertilization intensities at five study sites representative of German WOSR production. N2O fluxes exhibited the typical high spatial and temporal variability in dependence on soil texture, weather and nitrogen availability. The annual N2O emissions ranged between 0.24 kg and 5.48 kg N2O-N ha−1 a−1. N fertilization increased N2O emissions, particularly with the highest N treatment (240 kg N ha−1). Oil yield increased up to a fertilizer amount of 120 kg N ha−1, higher N-doses increased grain yield but decreased oil concentrations in the seeds. Consequently oil yield remained constant at higher N fertilization. Since, yield-related emission also increased exponentially with N surpluses, there is potential for reduction of the N fertilizer rate, which offers perspectives for the mitigation of GHG emissions. Our measurements double the published data basis of annual N2O flux measurements in WOSR. Based on this extended dataset we modeled the relationship between N2O emissions and fertilizer N input using an exponential model. The corresponding new N2O emission factor was 0.6% of applied fertilizer N for a common N fertilizer amount under best management practice in WOSR production (200 kg N ha−1 a−1). This factor is substantially lower than the linear IPCC Tier 1 factor (EF1) of 1.0% and other models that have been proposed. © 2017
  • Item
    Ammonia and greenhouse gas emissions from slurry storage : A review
    (Amsterdam [u.a.] : Elsevier, 2020) Kupper, Thomas; Häni, Christoph; Neftel, Albrecht; Kincaid, Chris; Bühler, Marcel; Amon, Barbara; VanderZaag, Andrew
    Storage of slurry is an important emission source for ammonia (NH3), nitrous oxide (N2O), methane (CH4), carbon dioxide (CO2) and hydrogen sulfide (H2S) from livestock production. Therefore, this study collected published emission data from stored cattle and pig slurry to determine baseline emission values and emission changes due to slurry treatment and coverage of stores. Emission data were collected from 120 papers yielding 711 records of measurements conducted at farm-, pilot- and laboratory-scale. The emission data reported in a multitude of units were standardized and compiled in a database. Descriptive statistics of the data from untreated slurry stored uncovered revealed a large variability in emissions for all gases. To determine baseline emissions, average values based on a weighting of the emission data according to the season and the duration of the emission measurements were constructed using the data from farm-scale and pilot-scale studies. Baseline emissions for cattle and pig slurry stored uncovered were calculated. When possible, it was further distinguished between storage in tanks without slurry treatment and storage in lagoons which implies solid-liquid separation and biological treatment. The baseline emissions on an area or volume basis are: for NH3: 0.12 g m−2 h-1 and 0.15 g m−2 h-1 for cattle and pig slurry stored in lagoons, and 0.08 g m−2 h-1 and 0.24 g m−2 h-1 for cattle and pig slurry stored in tanks; for N2O: 0.0003 g m−2 h-1 for cattle slurry stored in lagoons, and 0.002 g m−2 h-1 for both slurry types stored in tanks; for CH4: 0.95 g m-3 h-1 and 3.5 g m-3 h-1 for cattle and pig slurry stored in lagoons, and 0.58 g m-3 h-1 and 0.68 g m-3 h-1 for cattle and pig slurry stored in tanks; for CO2: 6.6 g m−2 h-1 and 0.3 g m−2 h-1 for cattle and pig slurry stored in lagoons, and 8.0 g m−2 h-1 for both slurry types stored in tanks; for H2S: 0.04 g m−2 h-1 and 0.01 g m−2 h-1 for cattle and pig slurry stored in lagoons. Related to total ammoniacal nitrogen (TAN), baseline emissions for tanks are 16% and 15% of TAN for cattle and pig slurry, respectively. Emissions of N2O and CH4 relative to nitrogen (N) and volatile solids (VS) are 0.13% of N and 0.10% of N and 2.9% of VS and 4.7% of VS for cattle and pig slurry, respectively. Total greenhouse gas emissions from slurry stores are dominated by CH4. The records on slurry treatment using acidification show a reduction of NH3 and CH4 emissions during storage while an increase occurs for N2O and a minor change for CO2 as compared to untreated slurry. Solid-liquid separation causes higher losses for NH3 and a reduction in CH4, N2O and CO2 emissions. Anaerobically digested slurry shows higher emissions during storage for NH3 while losses tend to be lower for CH4 and little changes occur for N2O and CO2 compared to untreated slurry. All cover types are found to be efficient for emission mitigation of NH3 from stores. The N2O emissions increase in many cases due to coverage. Lower CH4 emissions occur for impermeable covers as compared to uncovered slurry storage while for permeable covers the effect is unclear or emissions tend to increase. Limited and inconsistent data regarding emission changes with covering stores are available for CO2 and H2S. The compiled data provide a basis for improving emission inventories and highlight the need for further research to reduce uncertainty and fill data gaps regarding emissions from slurry storage.
  • Item
    Liquid assisted plasma enhanced chemical vapour deposition with a non-thermal plasma jet at atmospheric pressure
    (Amsterdam [u.a.] : Elsevier, 2016) Schäfer, Jan; Fricke, Katja; Mika, Filip; Pokorná, Zuzana; Zajíčková, Lenka; Foest, Rüdiger
    The present study introduces a process for the synthesis of functional films onto substrates directly from the liquid phase. The reported method is based on the initialization of the synthesis by means of an atmospheric pressure plasma jet operating with argon above a thin liquid film of the starting material. The process is demonstrated by the formation of a thin, solid SiOx film from siloxane-based liquid precursors. Changes in the chemical properties of the precursor were studied in-situ during the polymerization process on the diamond crystal by using Fourier transform infrared spectroscopy The elemental composition of the SiOxCy films was analyzed by X-ray photoelectron spectroscopy (XPS). Furthermore, XPS was applied to study the effect of post-annealing processes on the composition of the films. The obtained deposits exhibit a low concentration of carbon groups. The amount of hydroxyl groups and interstitial water can be reduced significantly by post-process annealing of the films.
  • Item
    Measuring and evaluating colorimetric properties of samples from loess-paleosol sequences
    (Amsterdam [u.a.] : Elsevier, 2023) Laag, Christian; Lagroix, France; Kreutzer, Sebastian; Chapkanski, Stoil; Zeeden, Christian; Guyodo, Yohan
    Colorimetric measurements are valuable in studying paleoenvironmental changes in sediment archives such as loess-paleosol sequences. These measurements allow for the identification of climate-sensitive minerals such as hematite, goethite, and secondary carbonates, as well as the observation of stratigraphic changes influenced by paleoclimate variations. Herein, a detailed workflow protocol emphasizing mineral abundance extraction by determining true band amplitudes is presented. Moreover, we present a protocol for colorimetric measurements that eliminates container bias, allowing the analysis and re-analysis of stored sediment quickly and inexpensively. Finally, we introduce a new R-package ('LESLIE') for graphical data display and enhancement. The protocol and its validation are demonstrated on the Suhia Kladenetz loess-paleosol sequence of northern Bulgaria. • A detailed workflow protocol eliminating container bias in colorimetric measurements and extracting mineral abundances is presented. • The protocol is independently validated with aid of Attenuated Total Reflectance Fourier Transform mid-infrared (ATR-FTIR) spectroscopic experiments. • Stratigraphic color enhancement using the R-package 'LESLIE' is facilitated by a user-friendly R-shiny application.
  • Item
    3D architecture of cyclic-step and antidune deposits in glacigenic subaqueous fan and delta settings: Integrating outcrop and ground-penetrating radar data
    (Amsterdam [u.a.] : Elsevier, 2017) Lang, Jörg; Sievers, Julian; Loewer, Markus; Igel, Jan; Winsemann, Jutta
    Bedforms related to supercritical flows are increasingly recognised as important constituents of many depositional environments, but outcrop studies are commonly hampered by long bedform wavelengths and complex three-dimensional geometries. We combined outcrop-based facies analysis with ground-penetrating radar (GPR) surveys to analyse the 3D facies architecture of subaqueous ice-contact fan and glacifluvial delta deposits. The studied sedimentary systems were deposited at the margins of the Middle Pleistocene Scandinavian ice sheets in Northern Germany. Glacifluvial Gilbert-type deltas are characterised by steeply dipping foreset beds, comprising cyclic-step deposits, which alternate with antidune deposits. Deposits of cyclic steps consist of lenticular scours infilled by backset cross-stratified pebbly sand and gravel. The GPR sections show that the scour fills form trains along the delta foresets, which can locally be traced for up to 15 m. Perpendicular and oblique to palaeoflow direction, these deposits appear as troughs with concentric or low-angle cross-stratified infills. Downflow transitions from scour fills into sheet-like low-angle cross-stratified or sinusoidally stratified pebbly sand, deposited by antidunes, are common. Cyclic steps and antidunes were deposited by sustained and surge-type supercritical density flows, which were related to hyperpycnal flows, triggered by major meltwater discharge or slope-failure events. Subaqueous ice-contact fan deposits include deposits of progradational scour fills, isolated hydraulic jumps, antidunes and (humpback) dunes. The gravel-rich fan succession consists of vertical stacks of laterally amalgamated pseudo-sheets, indicating deposition by pulses of waning supercritical flows under high aggradation rates. The GPR sections reveal the large-scale architecture of the sand-rich fan succession, which is characterised by lobe elements with basal erosional surfaces associated with scours filled with backsets related to hydraulic jumps, passing upwards and downflow into deposits of antidunes and (humpback) dunes. The recurrent facies architecture of the lobe elements and their prograding and retrograding stacking pattern are interpreted as related to autogenic flow morphodynamics.