Search Results

Now showing 1 - 8 of 8
  • Item
    Soil hydraulic interpretation of nuclear magnetic resonance measurements based on circular and triangular capillary models
    (Hoboken, NJ : Wiley, 2021) Costabel, Stephan; Hiller, Thomas
    Geophysical nuclear magnetic resonance (NMR) applications are used to estimate pore size distributions (PSDs) of rocks and sediments. This is commonly realized by empirical calibration using information about the surface-to-volume ratio of the material. Recent research has developed joint inversion concepts for NMR relaxation data that provides the PSD with a minimum of information. The application requires the NMR signal of a sample at saturation and at least one at partial saturation and at known suction. The new inversion concept physically simulates the desaturation process as part of the forward operator. The cross-section of the model capillaries in the underlying bundle can be either circular or triangular. Our study investigates the performance of the NMR joint inversion to predict water retention function (WRF) and capillary-based hydraulic conductivity (Kcap) as functions of saturation for different sands. The angularity of the pores has no significant impact on the estimated WRF but affects the Kcap estimation significantly. Our study shows that the WRF is predicted reliably for sand samples under fast diffusion conditions. The Kcap estimations are also plausible but tend to systematic overestimation, for which we identified the tortuosity being the main reason. Because NMR relaxation data generally do not provide tortuosity information, a plausible tortuosity model remains an issue of classical calibration. Further development of the approach will thus consider tortuosity measurements (e.g., by electrical resistivity measurements and/or gradient NMR) and will consider the relaxation mechanisms outside fast diffusion conditions to enhance its applicability for coarse soils.
  • Item
    Mineral Magnetic Characterization of High‐Latitude Sediments From Lake Levinson‐Lessing, Siberia
    (Hoboken, NJ : Wiley, 2021) Scheidt, Stephanie; Egli, Ramon; Lenz, Matthias; Rolf, Christian; Fabian, Karl; Melles, Martin
    Levinson-Lessing Lake in northern Central Siberia is a sedimentary archive characterized by continuous, widely constant sedimentation at high rates (0.7 m ka−1 for >32 ka). This study provides the first evidence of the suitability of the lake′s sediments for paleomagnetic analyses using the 46-m-long core Co1401. Although the lowermost 8 m are disturbed, the upper 38 m of Co1401 provide the preconditions for an exceptional, high-resolution paleomagnetic record located within the tangent cylinder of the inner core. High-resolution analyses of magnetic susceptibility, anhysteretic remanent magnetization, isothermal remanent magnetization, and hysteresis parameters show largely uniform mineral magnetic properties. First-order reversal curves indicate magnetite particles in pseudo-single domain state are the main remanence carrier, supplemented by single-domain particles, originating likely from magnetotactic bacteria. Above 6.7 m, the bulk magnetic mineralogy is slightly harder than below and initial greigite formation occurs. However, the main remanence carriers are still of detrital origin.
  • Item
    Feasibility study on prepolarized surface nuclear magnetic resonance for soil moisture measurements
    (Hoboken, NJ : Wiley, 2021) Hiller, Thomas; Costabel, Stephan; Radić, Tino; Dlugosch, Raphael; Müller‐Petke, Mike
    In the past few years, small-scale (2 m) prepolarized surface nuclear magnetic resonance (SNMR) has gained increasing interest in the research community. As recent studies demonstrated, the application of a strong prepolarization field enhances the SNMR signal of coils with a footprint <1 m2 up to a level that even enables investigations in urban areas. In particular, it is expected that this noninvasive method provides the soil moisture distribution in the upper 2 m of the subsurface in the near future. However, until now all field experiments have been carried out on water reservoirs only, in an approach to test and implement this rather new technique into the field of SNMR applications. We present the first prepolarized SNMR measurement on a real soil and demonstrate the general feasibility of this technique to qualitatively and quantitatively detect soil moisture in the upper first 0.5 m. Our soil moisture measurements are validated by independent time domain reflectometry data. To complement the field experiments with numerical simulations, we adapted the underlying SNMR spin dynamics simulations and account for prepolarization switch-off effects in the forward modeling of the SNMR excitation.
  • Item
    Near-surface fault detection using high-resolution shear wave reflection seismics at the CO2CRC Otway Project site, Australia
    (Hoboken, NJ : Wiley, 2016) Beilecke, Thies; Krawczyk, Charlotte M.; Ziesch, Jennifer; Tanner, David C.
    High-resolution, near-surface, shear wave reflection seismic measurements were carried out in November 2013 at the CO2CRC Otway Project site, Victoria, Australia, with the aim to determine whether and, if so, where deeper faults reach the near subsurface. From a previous P wave 3-D reflection seismic data set that was concentrated on a reservoir at 2 km depth, we can only interpret faults up to 400 m below sea level. For the future monitoring in the overburden of the CO2 reservoir it is important to know whether and how the faults continue in the subsurface. We prove that two regional fault zones do in fact reach the surface instead of dying out at depth. Individual first-break signatures in the shot gathers along the profiles support this interpretation. However, this finding does not imply perforce communication between the reservoir and the surface in the framework of CO2 injection. The shear wave seismic sections are complementary to existing P wave volumes. They image with high resolution (better than 3 m vertically) different tectonic structures. Similar structures also outcrop on the southern coast of the Otway Basin. Both the seismic and the outcrops evidence the complex youngest structural history of the area.
  • Item
    First Measurements of Surface Nuclear Magnetic Resonance Signals in a Grounded Bipole
    (Hoboken, NJ : Wiley, 2019) Davis, A.C.; Skibbe, N.; Müller‐Petke, M.
    Surface nuclear magnetic resonance (surface NMR) soundings are geophysical techniques that offer direct detection of groundwater. Ordinary surface NMR soundings are achieved with a wire loop that acts as both transmitter and receiver. We extend the capability of the technique by using a grounded electrical bipole as the measurement sensor. We provide the first successful measurements of surface NMR signals taken with a grounded electrode pair on a beach outside Perth, Western Australia. Simple changes to existing equations are sufficient to provide forward models for the changes in measurement technique, and the resulting groundwater models are consistent with coincident loop soundings. Our result opens the field for novel sounding techniques of surface NMR signals that could have broad impact on near-surface groundwater investigations.
  • Item
    Evaluating Experimental Design of ERT for Soil Moisture Monitoring in Contour Hedgerow Intercropping Systems
    (Hoboken, NJ : Wiley, 2012) Garré, S.; Günther, T.; Diels, J.; Vanderborght, J.
    Contour hedgerow intercropping systems have been proposed as an alternative to traditional agricultural practice with a single crop, as they are effective in reducing run-off and soil erosion. However, competition for water and nutrients between crops and associated hedgerows may reduce the overall performance of these systems. To get a more detailed understanding of the competition for water, spatially resolved monitoring of soil water contents in the soil-plant-atmosphere system is necessary. Electrical resistivity tomography (ERT) is potentially a valuable technique to monitor changes in soil moisture in space and time. In this study, the performance of different ERT electrode arrays to detect the soil moisture dynamics in a mono- and an intercropping system was tested. Their performance was analyzed based on a synthetic study using geophysical measures, such as data recovery and resolution, and using spatial statistics of retrieved water content, such as an adjusted coefficient of variation and semivariances. The synthetic ERT measurements detected differences between the cropping systems and retrieved spatial structure of the soil moisture distribution, but the variance and semivariance were underestimated. Sharp water content contrasts between horizons or in the neighborhood of a root water uptake bulb were smoothened. The addition of electrodes deeper in the soil improved the performance, but sometimes only marginally. ERT is therefore a valuable tool for soil moisture monitoring in the field under different cropping systems if an electrode array is used which can resolve the patterns expected to be present in the medium. The use of spatial statistics allowed to not only identify the overall model recovery, but also to quantify the recovery of spatial structures.
  • Item
    Noninvasive Estimation of Water Retention Parameters by Observing the Capillary Fringe with Magnetic Resonance Sounding
    (Hoboken, NJ : Wiley, 2014) Costabel, Stephan; Günther, Thomas
    The magnetic resonance sounding (MRS) method is usually applied for delineation and characterization of aquifer system stratification. Its unique property, distinct from other hydrogeophysical methods, is the direct sensitivity to water content in the subsurface. The inversion of MRS data yields the subsurface water content distribution without need of a petrophysical model. Recent developments in instrumentation, i.e., decreased instrumental dead times and advanced noise cancellation strategies, enable the use of this method for investigating the vadose zone. A possible way to interpret MRS measurements with focus on water retention (WR) parameters is an inversion approach that directly provides WR parameters by modeling the capillary fringe (CF inversion). We have developed this kind of inversion further to account for different WR models and present a sensitivity study based on both synthetic and real field data. To assess the general applicability of the CF inversion, we analyzed the resolution properties for different measurement layouts and the parameter uncertainties for different realistic scenarios. Under moderate noise conditions and if the water table position is known, all WR parameters except the residual water content can be reliably estimated. The relative accuracy of the estimated pore distribution index estimation is better for larger CF. Small measurement loops of 5-m diameter achieve the best resolution for shallow investigation depths of <10 m.
  • Item
    Initiation and development of normal faults within the German alpine foreland basin: The inconspicuous role of basement structures
    (Hoboken, NJ : Wiley, 2016) Hartmann, Hartwig von; Tanner, David C.; Schumacher, Sandra
    In a large seismic cube within the German Alpine Molasse Basin, we recognize large normal faults with lateral alternating dips that displace the Molasse sediments. They are disconnected but strike parallel to fault lineaments of the underlying carbonate platform. This raises the question how such faults could independently develop. Structural analysis suggests that the faults grew both upward and downward from the middle of the Molasse package, i.e., they newly initiated within the Molasse sediments and were not caused by reactivation of the faults in the carbonate platform and/or crystalline basement. Numerical modeling of the basin proves that temporarily and spatially confined extensional stresses existed within the Molasse sediments but not in the carbonate platform and basement during lithospheric bending. The workflow shown here gives a new and as yet undocumented insight in the tectonic and structural processes within a foreland basin that was affected by buckling and bending in front of the orogen.