Search Results

Now showing 1 - 7 of 7
  • Item
    Transboundary geophysical mapping of geological elements and salinity distribution critical for the assessment of future sea water intrusion in response to sea level rise
    (Munich : EGU, 2012) Jørgensen, F.; Scheer, W.; Thomsen, S.; Sonnenborg, T.O.; Hinsby, K.; Wiederhold, H.; Schamper, C.; Burschil, T.; Roth, B.; Kirsch, R.; Auken, E.
    Geophysical techniques are increasingly being used as tools for characterising the subsurface, and they are generally required to develop subsurface models that properly delineate the distribution of aquifers and aquitards, salt/freshwater interfaces, and geological structures that affect groundwater flow. In a study area covering 730 km2 across the border between Germany and Denmark, a combination of an airborne electromagnetic survey (performed with the SkyTEM system), a high-resolution seismic survey and borehole logging has been used in an integrated mapping of important geological, physical and chemical features of the subsurface. The spacing between flight lines is 200–250 m which gives a total of about 3200 line km. About 38 km of seismic lines have been collected. Faults bordering a graben structure, buried tunnel valleys, glaciotectonic thrust complexes, marine clay units, and sand aquifers are all examples of geological structures mapped by the geophysical data that control groundwater flow and to some extent hydrochemistry. Additionally, the data provide an excellent picture of the salinity distribution in the area and thus provide important information on the salt/freshwater boundary and the chemical status of groundwater. Although the westernmost part of the study area along the North Sea coast is saturated with saline water and the TEM data therefore are strongly influenced by the increased electrical conductivity there, buried valleys and other geological elements are still revealed. The mapped salinity distribution indicates preferential flow paths through and along specific geological structures within the area. The effects of a future sea level rise on the groundwater system and groundwater chemistry are discussed with special emphasis on the importance of knowing the existence, distribution and geometry of the mapped geological elements, and their control on the groundwater salinity distribution is assessed.
  • Item
    Compiling geophysical and geological information into a 3-D model of the glacially-affected island of Föhr
    (Munich : EGU, 2012) Burschil, T.; Scheer, W.; Kirsch, R.; Wiederhold, H.
    Within the scope of climatic change and associated sea level rise, coastal aquifers are endangered and are becoming more a focus of research to ensure the future water supply in coastal areas. For groundwater modelling a good understanding of the geological/hydrogeological situation and the aquifer behavior is necessary. In preparation of groundwater modelling and assessment of climate change impacts on coastal water resources, we setup a geological/hydrogeological model for the North Sea Island of Föhr. Data from different geophysical methods applied from the air, the surface and in boreholes contribute to the 3-D model, e.g. airborne electromagnetics (SkyTEM) for spatial mapping the resistivity of the entire island, seismic reflections for detailed cross-sections in the groundwater catchment area, and geophysical borehole logging for calibration of these measurements. An iterative and integrated evaluation of the results from the different geophysical methods contributes to reliable data as input for the 3-D model covering the whole island and not just the well fields. The complex subsurface structure of the island is revealed. The local waterworks use a freshwater body embedded in saline groundwater. Several glaciations reordered the youngest Tertiary and Quaternary sediments by glaciotectonic thrust faulting, as well as incision and refill of glacial valleys. Both subsurface structures have a strong impact on the distribution of freshwater-bearing aquifers. A digital geological 3-D model reproduces the hydrogeological structure of the island as a base for a groundwater model. In the course of the data interpretation, we deliver a basis for rock identification. We demonstrate that geophysical investigation provide petrophysical parameters and improve the understanding of the subsurface and the groundwater system. The main benefit of our work is that the successful combination of electromagnetic, seismic and borehole data reveals the complex geology of a glacially-affected island. A sound understanding of the subsurface structure and the compilation of a 3-D model is imperative and the basis for a groundwater flow model to predict climate change effects on future water resources.
  • Item
    Spectral induced polarization measurements for predicting the hydraulic conductivity in sandy aquifers
    (Munich : EGU, 2013) Attwa, M.; Günther, T.
    Field and laboratory spectral induced polarization (SIP) measurements are integrated to characterize the hydrogeological conditions at the Schillerslage test site in Germany. The phase images are capable of monitoring thin peat layers within the sandy aquifers. However, the field results show limitations of decreasing resolution with depth. In comparison with the field inversion results, the SIP laboratory measurements show a certain shift in SIP response due to different compaction and sorting of the samples. The SIP data are analyzed to derive an empirical relationship for predicting the hydraulic conductivity (K). In particular, two significant but weak correlations between individual real resistivities (ρ') and relaxation times (τ), based on a Debye decomposition (DD) model, with measured K are found for the upper groundwater aquifer. The maximum relaxation time (τmax) and logarithmically weighted average relaxation time (τlw) show a better relation with K values than the median value τ50. A combined power law relation between individual ρ' and τ with K is developed with an expression of A · (ρ')B · (τlw)C, where A, B and C are determined using a least-squares fit between the measured and predicted K. The suggested approach with the calculated coefficients of the first aquifer is applied for the second. Results show good correlation with the measured K indicating that the derived relationship is superior to single phase angle models as Börner or Slater models.
  • Item
    Ground-penetrating radar insight into a coastal aquifer: the freshwater lens of Borkum Island
    (Munich : EGU, 2013) Igel, J.; Günther, T.; Kuntzer, M.
    Freshwater lenses, as important resource for drinking water, are sensitive to climate changes and sea level rise. To simulate this impact on the groundwater systems, hydraulic subsurface models have to be designed. Geophysical techniques can provide information for generating realistic models. The aim of our work is to show how ground-penetrating radar (GPR) investigations can contribute to such hydrological simulations. In the pilot area, Borkum island, GPR was used to map the shape of the groundwater table (GWT) and to characterise the aquifer. In total, 20 km of constant offset (CO) profiles were measured with centre frequencies of 80 and 200 MHz. Wave velocities were determined by common midpoint (CMP) measurements and vertical radar profiling (VRP) in a monitoring well. The 80 MHz CO data show a clear reflection at the groundwater table, whereas the reflection is weaker for the 200 MHz data. After correcting the GPR water tables for the capillary rise, they are in good accordance with the pressure heads of the observation wells in the area. In the centre of the island, the groundwater table is found up to 3.5 m above sea level, however it is lower towards the coastline and marshland. Some local depressions are observed in the region of dune valleys and around pumping stations of the local water supplier. GPR also reveals details within the sediments and highly-permeable aeolian sands can be distinguished from less-permeable marine sediments. Further, a silt loam layer below the water table could be mapped on a large area. The reflection characteristics indicates scattered erosion channels in this layer that cause it to be an aquitard with some leakage. GPR provides a high resolution map of the groundwater table and insight into the stratigraphy of the sediments and their hydraulic properties. This is valuable complementary information to the observation of sparsely distributed monitoring wells as input to hydraulic simulation.
  • Item
    Numerical modelling of climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods
    (Munich : EGU, 2012) Sulzbacher, H.; Wiederhold, H.; Siemon, B.; Grinat, M.; Igel, J.; Burschil, T.; Günther, T.; Hinsby, K.
    A numerical, density dependent groundwater model is set up for the North Sea Island of Borkum to estimate climate change impacts on coastal aquifers and especially the situation of barrier islands in the Wadden Sea. The database includes information from boreholes, a seismic survey, a helicopter-borne electromagnetic (HEM) survey, monitoring of the freshwater-saltwater boundary by vertical electrode chains in two boreholes, measurements of groundwater table, pumping and slug tests, as well as water samples. Based on a statistical analysis of borehole columns, seismic sections and HEM, a hydrogeological model is set up. The groundwater model is developed using the finite-element programme FEFLOW. The density dependent groundwater model is calibrated on the basis of hydraulic, hydrological and geophysical data, in particular spatial HEM and local monitoring data. Verification runs with the calibrated model show good agreement between measured and computed hydraulic heads. A good agreement is also obtained between measured and computed density or total dissolved solids data for both the entire freshwater lens on a large scale and in the area of the well fields on a small scale. For simulating future changes in this coastal groundwater system until the end of the current century, we use the climate scenario A2, specified by the Intergovernmental Panel on Climate Change and, in particular, the data for the German North Sea coast. Simulation runs show proceeding salinisation with time beneath the well fields of the two waterworks Waterdelle and Ostland. The modelling study shows that the spreading of well fields is an appropriate protection measure against excessive salinisation of the water supply until the end of the current century.
  • Item
    Modeling saltwater intrusion scenarios for a coastal aquifer at the German North Sea
    (Les Ulis : EDP Sciences, 2018) Schneider, A.; Zhao, H.; Wolf, J.; Logashenko, D.; Reiter, S.; Howahr, M.; Eley, M.; Gelleszun, M.; Wiederhold, H.; Szymkiewicz, Adam; Sadurski, A.; Jaworska-Szulc, B.
    A 3d regional density-driven flow model of a heterogeneous aquifer system at the German North Sea Coast is set up within the joint project NAWAK (“Development of sustainable adaption strategies for the water supply and distribution infrastructure on condition of climatic and demographic change”). The development of the freshwater-saltwater interface is simulated for three climate and demographic scenarios. Groundwater flow simulations are performed with the finite volume code d3f++ (distributed density driven flow) that has been developed with a view to the modelling of large, complex, strongly density-influenced aquifer systems over long time periods.
  • Item
    Characterization of a regional coastal zone aquifer using an interdisciplinary approach – an example from Weser-Elbe region, Lower Saxony, Germany
    (Les Ulis : EDP Sciences, 2018) Rahman, Mohammad Azizur; González, Eva; Wiederhold, Helga; Deus, Nico; Elbracht, Jörg; Siemon, Bernhard; Szymkiewicz, Adam; Sadurski, A.; Jaworska-Szulc, B.
    In this study, interdisciplinary approaches are considered to characterize the coastal zone aquifer of the Elbe-Weser region in the North of Lower Saxony, Germany. Geological, hydrogeological, geochemical and geophysical information have been considered to analyze the current status of the aquifers. All the information collectively states that the salinity distribution in the subsurface is heterogeneous both horizontally and vertically. Early age flooding also contributed to this heterogeneity. No general classification of groundwater quality (according to some piper diagrams) could be identified. Helicopter-borne electro-magnetic data clearly show the presence of freshwater reserves below the sea near the west coast. Groundwater recharge largely happens in the moraine ridges (west side of the area) where both the surface elevation and the groundwater level are high. Consequently, submarine groundwater discharge occurs from the same place. All these information will facilitate to develop the planned density driven groundwater flow and transport model for the study area.