Search Results

Now showing 1 - 10 of 27
Loading...
Thumbnail Image
Item

Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films

2022, Makushko, Pavlo, Kosub, Tobias, Pylypovskyi, Oleksandr V., Hedrich, Natascha, Li, Jiang, Pashkin, Alexej, Avdoshenko, Stanislav, Hübner, René, Ganss, Fabian, Wolf, Daniel, Lubk, Axel, Liedke, Maciej Oskar, Butterling, Maik, Wagner, Andreas, Wagner, Kai, Shields, Brendan J., Lehmann, Paul, Veremchuk, Igor, Fassbender, Jürgen, Maletinsky, Patrick, Makarov, Denys

Antiferromagnetic insulators are a prospective materials platform for magnonics, spin superfluidity, THz spintronics, and non-volatile data storage. A magnetomechanical coupling in antiferromagnets offers vast advantages in the control and manipulation of the primary order parameter yet remains largely unexplored. Here, we discover a new member in the family of flexoeffects in thin films of Cr2O3. We demonstrate that a gradient of mechanical strain can impact the magnetic phase transition resulting in the distribution of the Néel temperature along the thickness of a 50-nm-thick film. The inhomogeneous reduction of the antiferromagnetic order parameter induces a flexomagnetic coefficient of about 15 μB nm−2. The antiferromagnetic ordering in the inhomogeneously strained films can persist up to 100 °C, rendering Cr2O3 relevant for industrial electronics applications. Strain gradient in Cr2O3 thin films enables fundamental research on magnetomechanics and thermodynamics of antiferromagnetic solitons, spin waves and artificial spin ice systems in magnetic materials with continuously graded parameters.

Loading...
Thumbnail Image
Item

Imperceptible magnetoelectronics

2015, Melzer, Michael, Kaltenbrunner, Martin, Makarov, Denys, Karnaushenko, Dmitriy, Karnaushenko, Daniil, Sekitani, Tsuyoshi, Someya, Takao, Schmidt, Oliver G.

Future electronic skin aims to mimic nature’s original both in functionality and appearance. Although some of the multifaceted properties of human skin may remain exclusive to the biological system, electronics opens a unique path that leads beyond imitation and could equip us with unfamiliar senses. Here we demonstrate giant magnetoresistive sensor foils with high sensitivity, unmatched flexibility and mechanical endurance. They are <2 μm thick, extremely flexible (bending radii <3 μm), lightweight (≈3 g m−2) and wearable as imperceptible magneto-sensitive skin that enables proximity detection, navigation and touchless control. On elastomeric supports, they can be stretched uniaxially or biaxially, reaching strains of >270% and endure over 1,000 cycles without fatigue. These ultrathin magnetic field sensors readily conform to ubiquitous objects including human skin and offer a new sense for soft robotics, safety and healthcare monitoring, consumer electronics and electronic skin devices.

Loading...
Thumbnail Image
Item

Magnon spectrum of the helimagnetic insulator Cu2OSeO3

2016, Portnichenko, P.Y., Romhányi, J., Onykiienko, Y.A., Henschel, A., Schmidt, M., Cameron, A.S., Surmach, M.A., Lim, J.A., Park, J.T., Schneidewind, A., Abernathy, D.L., Rosner, H., van den Brink, Jeroen, Inosov, D.S.

Complex low-temperature-ordered states in chiral magnets are typically governed by a competition between multiple magnetic interactions. The chiral-lattice multiferroic Cu2OSeO3 became the first insulating helimagnetic material in which a long-range order of topologically stable spin vortices known as skyrmions was established. Here we employ state-of-the-art inelastic neutron scattering to comprehend the full three-dimensional spin-excitation spectrum of Cu2OSeO3 over a broad range of energies. Distinct types of high- and low-energy dispersive magnon modes separated by an extensive energy gap are observed in excellent agreement with the previously suggested microscopic theory based on a model of entangled Cu4 tetrahedra. The comparison of our neutron spectroscopy data with model spin-dynamical calculations based on these theoretical proposals enables an accurate quantitative verification of the fundamental magnetic interactions in Cu2OSeO3 that are essential for understanding its abundant low-temperature magnetically ordered phases.

Loading...
Thumbnail Image
Item

Spin-orbit-driven magnetic structure and excitation in the 5d pyrochlore Cd2Os2O7

2016, Calder, S., Vale, J.G., Bogdanov, N.A., Liu, X., Donnerer, C., Upton, M.H., Casa, D., Said, A.H., Lumsden, M.D., Zhao, Z., Yan, J.-Q., Mandrus, D., Nishimoto, S., van den Brink, J., Hill, J.P., McMorrow, D.F., Christianson, A.D.

Much consideration has been given to the role of spin-orbit coupling (SOC) in 5d oxides, particularly on the formation of novel electronic states and manifested metal-insulator transitions (MITs). SOC plays a dominant role in 5d5 iridates (Ir4þ), undergoing MITs both concurrent (pyrochlores) and separated (perovskites) from the onset of magnetic order. However, the role of SOC for other 5d configurations is less clear. For example, 5d3 (Os5þ) systems are expected to have an orbital singlet with reduced effective SOC. The pyrochlore Cd2Os2O7 nonetheless exhibits a MIT entwined with magnetic order phenomenologically similar to pyrochlore iridates. Here, we resolve the magnetic structure in Cd2Os2O7 with neutron diffraction and then via resonant inelastic X-ray scattering determine the salient electronic and magnetic energy scales controlling the MIT. In particular, SOC plays a subtle role in creating the electronic ground state but drives the magnetic order and emergence of a multiple spin-flip magnetic excitation.

Loading...
Thumbnail Image
Item

Dimensional reduction and incommensurate dynamic correlations in the S=1/2 triangular-lattice antiferromagnet Ca3ReO5Cl2

2022, Zvyagin, S.A., Ponomaryov, A.N., Wosnitza, J., Hirai, D., Hiroi, Z., Gen, M., Kohama, Y., Matsuo, A., Matsuda, Y.H., Kindo, K.

The observation of spinon excitations in the S=1/2 triangular antiferromagnet Ca3ReO5Cl2 reveals a quasi-one-dimensional (1D) nature of magnetic correlations, in spite of the nominally 2D magnetic structure. This phenomenon is known as frustration-induced dimensional reduction. Here, we present high-field electron spin resonance spectroscopy and magnetization studies of Ca3ReO5Cl2, allowing us not only to refine spin-Hamiltonian parameters, but also to investigate peculiarities of its low-energy spin dynamics. We argue that the presence of the uniform Dzyaloshinskii-Moriya interaction (DMI) shifts the spinon continuum in momentum space and, as a result, opens a zero-field gap at the Γ point. We observed this gap directly. The shift is found to be consistent with the structural modulation in the ordered state, suggesting this material as a perfect model triangular-lattice system, where a pure DMI-spiral ground state can be realized.

Loading...
Thumbnail Image
Item

Purely antiferromagnetic magnetoelectric random access memory

2017, Kosub, Tobias, Kopte, Martin, Hühne, Ruben, Appel, Patrick, Shields, Brendan, Maletinsky, Patrick, Hübner, René, Liedke, Maciej Oskar, Fassbender, Jürgen, Schmidt, Oliver G., Makarov, Denys

Magnetic random access memory schemes employing magnetoelectric coupling to write binary information promise outstanding energy efficiency. We propose and demonstrate a purely antiferromagnetic magnetoelectric random access memory (AF-MERAM) that offers a remarkable 50-fold reduction of the writing threshold compared with ferromagnet-based counterparts, is robust against magnetic disturbances and exhibits no ferromagnetic hysteresis losses. Using the magnetoelectric antiferromagnet Cr2O3, we demonstrate reliable isothermal switching via gate voltage pulses and all-electric readout at room temperature. As no ferromagnetic component is present in the system, the writing magnetic field does not need to be pulsed for readout, allowing permanent magnets to be used. Based on our prototypes, we construct a comprehensive model of the magnetoelectric selection mechanisms in thin films of magnetoelectric antiferromagnets, revealing misfit induced ferrimagnetism as an important factor. Beyond memory applications, the AF-MERAM concept introduces a general all-electric interface for antiferromagnets and should find wide applicability in antiferromagnetic spintronics.

Loading...
Thumbnail Image
Item

Strongly frustrated triangular spin lattice emerging from triplet dimer formation in honeycomb Li2IrO3

2016, Nishimoto, Satoshi, Katukuri, Vamshi M., Yushankhai, Viktor, Stoll, Hermann, Rößler, Ulrich K., Hozoi, Liviu, Rousochatzakis, Ioannis, van den Brink, Jeroen

Iridium oxides with a honeycomb lattice have been identified as platforms for the much anticipated Kitaev topological spin liquid: the spin-orbit entangled states of Ir4+ in principle generate precisely the required type of anisotropic exchange. However, other magnetic couplings can drive the system away from the spin-liquid phase. With this in mind, here we disentangle the different magnetic interactions in Li2IrO3, a honeycomb iridate with two crystallographically inequivalent sets of adjacent Ir sites. Our ab initio many-body calculations show that, while both Heisenberg and Kitaev nearest-neighbour couplings are present, on one set of Ir–Ir bonds the former dominates, resulting in the formation of spin-triplet dimers. The triplet dimers frame a strongly frustrated triangular lattice and by exact cluster diagonalization we show that they remain protected in a wide region of the phase diagram.

Loading...
Thumbnail Image
Item

Giant stress response of terahertz magnons in a spin-orbit Mott insulator

2022, Kim, Hun-Ho, Ueda, Kentaro, Nakata, Suguru, Wochner, Peter, Mackenzie, Andrew, Hicks, Clifford, Khaliullin, Giniyat, Liu, Huimei, Keimer, Bernhard, Minola, Matteo

Magnonic devices operating at terahertz frequencies offer intriguing prospects for high-speed electronics with minimal energy dissipation However, guiding and manipulating terahertz magnons via external parameters present formidable challenges. Here we report the results of magnetic Raman scattering experiments on the antiferromagnetic spin-orbit Mott insulator Sr2IrO4 under uniaxial stress. We find that the energies of zone-center magnons are extremely stress sensitive: lattice strain of 0.1% increases the magnon energy by 40%. The magnon response is symmetric with respect to the sign of the applied stress (tensile or compressive), but depends strongly on its direction in the IrO2 planes. A theory based on coupling of the spin-orbit-entangled iridium magnetic moments to lattice distortions provides a quantitative explanation of the Raman data and a comprehensive framework for the description of magnon-lattice interactions in magnets with strong spin-orbit coupling. The possibility to efficiently manipulate the propagation of terahertz magnons via external stress opens up multifold design options for reconfigurable magnonic devices.

Loading...
Thumbnail Image
Item

Linear magnetoresistance due to multiple-electron scattering by low-mobility islands in an inhomogeneous conductor

2012, Kozlova, N .V., Mori, N., Makarovsky, O., Eaves, L., Zhuang, Q.D., Krier, A., Patanè, A.

Linear transverse magnetoresistance is commonly observed in many material systems including semimetals, narrow band-gap semiconductors, multi-layer graphene and topological insulators. It can originate in an inhomogeneous conductor from distortions in the current paths induced by macroscopic spatial fluctuations in the carrier mobility and it has been explained using a phenomenological semiclassical random resistor network model. However, the link between the linear magnetoresistance and the microscopic nature of the electron dynamics remains unknown. Here we demonstrate how the linear magnetoresistance arises from the stochastic behaviour of the electronic cycloidal trajectories around low-mobility islands in high-mobility inhomogeneous conductors and that this process is only weakly affected by the applied electric field strength. Also, we establish a quantitative link between the island morphology and the strength of linear magnetoresistance of relevance for future applications.

Loading...
Thumbnail Image
Item

Multiple fermion scattering in the weakly coupled spin-chain compound YbAlO3

2021, Nikitin, S., Nishimoto, S., Fan, Y., Wu, J., Wu, L., Sukhanov, A., Brando, M., Pavlovskii, N., Xu, J., Vasylechko, L., Yu, R., Podlesnyak, A.

The Heisenberg antiferromagnetic spin-1/2 chain, originally introduced almost a century ago, is one of the best studied models in quantum mechanics due to its exact solution, but nevertheless it continues to present new discoveries. Its low-energy physics is described by the Tomonaga-Luttinger liquid of spinless fermions, similar to the conduction electrons in one-dimensional metals. In this work we investigate the Heisenberg spin-chain compound YbAlO3 and show that the weak interchain coupling causes Umklapp scattering between the left- and right-moving fermions and stabilizes an incommensurate spin-density wave order at q = 2kF under finite magnetic fields. These Umklapp processes open a route to multiple coherent scattering of fermions, which results in the formation of satellites at integer multiples of the incommensurate fundamental wavevector Q = nq. Our work provides surprising and profound insight into bandstructure control for emergent fermions in quantum materials, and shows how neutron diffraction can be applied to investigate the phenomenon of coherent multiple scattering in metals through the proxy of quantum magnetic systems.