Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Porous PEDOT:PSS Particles and their Application as Tunable Cell Culture Substrate

2021, Rauer, Sebastian Bernhard, Bell, Daniel Josef, Jain, Puja, Rahimi, Khosrow, Felder, Daniel, Linkhorst, John, Wessling, Matthias

Due to its biocompatibility, electrical conductivity, and tissue-like elasticity, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) constitutes a highly promising material regarding the fabrication of smart cell culture substrates. However, until now, high-throughput synthesis of pure PEDOT:PSS geometries was restricted to flat sheets and fibers. In this publication, the first microfluidic process for the synthesis of spherical, highly porous, pure PEDOT:PSS particles of adjustable material properties is presented. The particles are synthesized by the generation of PEDOT:PSS emulsion droplets within a 1-octanol continuous phase and their subsequent coagulation and partial crystallization in an isopropanol (IPA)/sulfuric acid (SA) bath. The process allows to tailor central particle characteristics such as crystallinity, particle diameter, pore size as well as electrochemical and mechanical properties by simply adjusting the IPA:SA ratio during droplet coagulation. To demonstrate the applicability of PEDOT:PSS particles as potential cell culture substrate, cultivations of L929 mouse fibroblast cells and MRC-5 human fibroblast cells are conducted. Both cell lines present exponential growth on PEDOT:PSS particles and reach confluency with cell viabilities above 95 vol.% on culture day 9. Single cell analysis could moreover reveal that mechanotransduction and cell infiltration can be controlled by the adjustment of particle crystallinity.

Loading...
Thumbnail Image
Item

Towards a Biohybrid Lung: Endothelial Cells Promote Oxygen Transfer through Gas Permeable Membranes

2017, Menzel, Sarah, Finocchiaro, Nicole, Donay, Christine, Thiebes, Anja Lena, Hesselmann, Felix, Arens, Jutta, Djeljadini, Suzana, Wessling, Matthias, Schmitz-Rode, Thomas, Jockenhoevel, Stefan, Cornelissen, Christian Gabriel

In patients with respiratory failure, extracorporeal lung support can ensure the vital gas exchange via gas permeable membranes but its application is restricted by limited long-term stability and hemocompatibility of the gas permeable membranes, which are in contact with the blood. Endothelial cells lining these membranes promise physiological hemocompatibility and should enable prolonged application. However, the endothelial cells increase the diffusion barrier of the blood-gas interface and thus affect gas transfer. In this study, we evaluated how the endothelial cells affect the gas exchange to optimize performance while maintaining an integral cell layer. Human umbilical vein endothelial cells were seeded on gas permeable cell culture membranes and cultivated in a custom-made bioreactor. Oxygen transfer rates of blank and endothelialized membranes in endothelial culture medium were determined. Cell morphology was assessed by microscopy and immunohistochemistry. Both setups provided oxygenation of the test fluid featuring small standard deviations of the measurements. Throughout the measuring range, the endothelial cells seem to promote gas transfer to a certain extent exceeding the blank membranes gas transfer performance by up to 120%. Although the underlying principles hereof still need to be clarified, the results represent a significant step towards the development of a biohybrid lung.

Loading...
Thumbnail Image
Item

Quantifying ligand-cell interactions and determination of the surface concentrations of ligands on hydrogel films: The measurement challenge

2015, Beer, Meike V., Hahn, Kathrin, Diederichs, Sylvia, Fabry, Marlies, Singh, Smriti, Spencer, Steve J., Salber, Jochen, Möller, Martin, Shard, Alexander G., Groll, Jürgen

Hydrogels are extensively studied for biomaterials application as they provide water swollen noninteracting matrices in which specific binding motifs and enzyme-sensitive degradation sites can be incorporated to tailor cell adhesion, proliferation, and migration. Hydrogels also serve as excellent basis for surface modification of biomaterials where interfacial characteristics are decisive for implant success or failure. However, the three-dimensional nature of hydrogels makes it hard to distinguish between the bioactive ligand density at the hydrogel-cell interface that is able to interact with cells and the ligands that are immobilized inside the hydrogel and not accessible for cells. Here, the authors compare x-ray photoelectron spectrometry (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), enzyme linked immunosorbent assay (ELISA), and the correlation with quantitative cell adhesion using primary human dermal fibroblasts (HDF) to gain insight into ligand distribution. The authors show that although XPS provides the most useful quantitative analysis, it lacks the sensitivity to measure biologically meaningful concentrations of ligands. However, ToF-SIMS is able to access this range provided that there are clearly distinguishable secondary ions and a calibration method is found. Detection by ELISA appears to be sensitive to the ligand density on the surface that is necessary to mediate cell adhesion, but the upper limit of detection coincides closely with the minimal ligand spacing required to support cell proliferation. Radioactive measurements and ELISAs were performed on amine reactive well plates as true 2D surfaces to estimate the ligand density necessary to allow cell adhesion onto hydrogel films. Optimal ligand spacing for HDF adhesion and proliferation on ultrathin hydrogel films was determined as 6.5 ± 1.5 nm.

Loading...
Thumbnail Image
Item

Wet-Spinning of Biocompatible Core–Shell Polyelectrolyte Complex Fibers for Tissue Engineering

2020, Cui, Qing, Bell, Daniel Josef, Rauer, Sebastian Bernhard, Wessling, Matthias

Polyelectrolyte complex fibers (PEC fibers) have great potential with regard to biomedical applications as they can be fabricated from biocompatible and water-soluble polyelectrolytes under mild process conditions. The present publication describes a novel method for the continuous fabrication of PEC fibers in a water-based wet-spinning process by interfacial complexation within a core–shell spinneret. This process combines the robustness and flexibility of nonsolvent-induced phase separation (NIPS) spinning processes conventionally used in the membrane industry with the complexation between oppositely charged polyelectrolytes. The produced fibers demonstrate a core–shell structure with a low-density core and a highly porous polyelectrolyte complex shell of ≈800 Î¼m diameter. In the case of chitosan and polystyrene sulfonate (PSS), mechanical fiber properties could be enhanced by doping the PSS with poly(ethylene oxide) (PEO). The resulting CHI/PSS-PEO fibers present a Young modulus of 3.78 GPa and a tensile strength of 165 MPa, which is an excellent combination of elongation at break and break stress compared to literature. The suitability of the CHI/PSS-PEO fibers as a scaffold for cell culture applications is verified by a four-day cultivation of human HeLa cells on PEO-reinforced fibers with a subsequent analysis of cell viability by fluorescence-based live/dead assay. © 2020 The Authors. Published by Wiley-VCH GmbH