Search Results

Now showing 1 - 10 of 17
Loading...
Thumbnail Image
Item

Porous PEDOT:PSS Particles and their Application as Tunable Cell Culture Substrate

2021, Rauer, Sebastian Bernhard, Bell, Daniel Josef, Jain, Puja, Rahimi, Khosrow, Felder, Daniel, Linkhorst, John, Wessling, Matthias

Due to its biocompatibility, electrical conductivity, and tissue-like elasticity, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) constitutes a highly promising material regarding the fabrication of smart cell culture substrates. However, until now, high-throughput synthesis of pure PEDOT:PSS geometries was restricted to flat sheets and fibers. In this publication, the first microfluidic process for the synthesis of spherical, highly porous, pure PEDOT:PSS particles of adjustable material properties is presented. The particles are synthesized by the generation of PEDOT:PSS emulsion droplets within a 1-octanol continuous phase and their subsequent coagulation and partial crystallization in an isopropanol (IPA)/sulfuric acid (SA) bath. The process allows to tailor central particle characteristics such as crystallinity, particle diameter, pore size as well as electrochemical and mechanical properties by simply adjusting the IPA:SA ratio during droplet coagulation. To demonstrate the applicability of PEDOT:PSS particles as potential cell culture substrate, cultivations of L929 mouse fibroblast cells and MRC-5 human fibroblast cells are conducted. Both cell lines present exponential growth on PEDOT:PSS particles and reach confluency with cell viabilities above 95 vol.% on culture day 9. Single cell analysis could moreover reveal that mechanotransduction and cell infiltration can be controlled by the adjustment of particle crystallinity.

Loading...
Thumbnail Image
Item

Integrating Biophysics in Toxicology

2020, Del Favero, G., Kraegeloh, A.

Integration of biophysical stimulation in test systems is established in diverse branches of biomedical sciences including toxicology. This is largely motivated by the need to create novel experimental setups capable of reproducing more closely in vivo physiological conditions. Indeed, we face the need to increase predictive power and experimental output, albeit reducing the use of animals in toxicity testing. In vivo, mechanical stimulation is essential for cellular homeostasis. In vitro, diverse strategies can be used to model this crucial component. The compliance of the extracellular matrix can be tuned by modifying the stiffness or through the deformation of substrates hosting the cells via static or dynamic strain. Moreover, cells can be cultivated under shear stress deriving from the movement of the extracellular fluids. In turn, introduction of physical cues in the cell culture environment modulates differentiation, functional properties, and metabolic competence, thus influencing cellular capability to cope with toxic insults. This review summarizes the state of the art of integration of biophysical stimuli in model systems for toxicity testing, discusses future challenges, and provides perspectives for the further advancement of in vitro cytotoxicity studies.

Loading...
Thumbnail Image
Item

Tailoring three-dimensional architectures by rolled-up nanotechnology for mimicking microvasculatures

2015, Arayanarakool, Rerngchai, Meyer, Anne K., Helbig, Linda, Sanchez, Samuel, Schmidt, Oliver G.

Artificial microvasculature, particularly as part of the blood–brain barrier, has a high benefit for pharmacological drug discovery and uptake regulation. We demonstrate the fabrication of tubular structures with patterns of holes, which are capable of mimicking microvasculatures. By using photolithography, the dimensions of the cylindrical scaffolds can be precisely tuned as well as the alignment and size of holes. Overlapping holes can be tailored to create diverse three-dimensional configurations, for example, periodic nanoscaled apertures. The porous tubes, which can be made from diverse materials for differential functionalization, are biocompatible and can be modified to be biodegradable in the culture medium. As a proof of concept, endothelial cells (ECs) as well as astrocytes were cultured on these scaffolds. They form monolayers along the scaffolds, are guided by the array of holes and express tight junctions. Nanoscaled filaments of cells on these scaffolds were visualized by scanning electron microscopy (SEM). This work provides the basic concept mainly for an in vitro model of microvasculature which could also be possibly implanted in vivo due to its biodegradability.

Loading...
Thumbnail Image
Item

Exogenous supply of Hsp47 triggers fibrillar collagen deposition in skin cell cultures in vitro

2020, Khan, E.S., Sankaran, S., Llontop, L., Del Campo, A.

Background: Collagen is a structural protein that provides mechanical stability and defined architectures to skin. In collagen-based skin disorders this stability is lost, either due to mutations in collagens or in the chaperones involved in collagen assembly. This leads to chronic wounds, skin fragility, and blistering. Existing approaches to treat such conditions rely on administration of small molecules to simulate collagen production, like 4-phenylbutyrate (4-PBA) or growth factors like TGF-β. However, these molecules are not specific for collagen synthesis, and result in unsolicited side effects. Hsp47 is a collagen-specific chaperone with a major role in collagen biosynthesis. Expression levels of Hsp47 correlate with collagen deposition. This article explores the stimulation of collagen deposition by exogenously supplied Hsp47 (collagen specific chaperone) to skin cells, including specific collagen subtypes quantification. Results: Here we quantify the collagen deposition level and the types of deposited collagens after Hsp47 stimulation in different in vitro cultures of cells from human skin tissue (fibroblasts NHDF, keratinocytes HaCat and endothelial cells HDMEC) and mouse fibroblasts (L929 and MEF). We find upregulated deposition of fibrillar collagen subtypes I, III and V after Hsp47 delivery. Network collagen IV deposition was enhanced in HaCat and HDMECs, while fibril-associated collagen XII was not affected by the increased intracellular Hsp47 levels. The deposition levels of fibrillar collagen were cell-dependent i.e. Hsp47-stimulated fibroblasts deposited significantly higher amount of fibrillar collagen than Hsp47-stimulated HaCat and HDMECs. Conclusions: A 3-fold enhancement of collagen deposition was observed in fibroblasts upon repeated dosage of Hsp47 within the first 6 days of culture. Our results provide fundamental understanding towards the idea of using Hsp47 as therapeutic protein to treat collagen disorders.

Loading...
Thumbnail Image
Item

Quantifying ligand-cell interactions and determination of the surface concentrations of ligands on hydrogel films: The measurement challenge

2015, Beer, Meike V., Hahn, Kathrin, Diederichs, Sylvia, Fabry, Marlies, Singh, Smriti, Spencer, Steve J., Salber, Jochen, Möller, Martin, Shard, Alexander G., Groll, Jürgen

Hydrogels are extensively studied for biomaterials application as they provide water swollen noninteracting matrices in which specific binding motifs and enzyme-sensitive degradation sites can be incorporated to tailor cell adhesion, proliferation, and migration. Hydrogels also serve as excellent basis for surface modification of biomaterials where interfacial characteristics are decisive for implant success or failure. However, the three-dimensional nature of hydrogels makes it hard to distinguish between the bioactive ligand density at the hydrogel-cell interface that is able to interact with cells and the ligands that are immobilized inside the hydrogel and not accessible for cells. Here, the authors compare x-ray photoelectron spectrometry (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), enzyme linked immunosorbent assay (ELISA), and the correlation with quantitative cell adhesion using primary human dermal fibroblasts (HDF) to gain insight into ligand distribution. The authors show that although XPS provides the most useful quantitative analysis, it lacks the sensitivity to measure biologically meaningful concentrations of ligands. However, ToF-SIMS is able to access this range provided that there are clearly distinguishable secondary ions and a calibration method is found. Detection by ELISA appears to be sensitive to the ligand density on the surface that is necessary to mediate cell adhesion, but the upper limit of detection coincides closely with the minimal ligand spacing required to support cell proliferation. Radioactive measurements and ELISAs were performed on amine reactive well plates as true 2D surfaces to estimate the ligand density necessary to allow cell adhesion onto hydrogel films. Optimal ligand spacing for HDF adhesion and proliferation on ultrathin hydrogel films was determined as 6.5 ± 1.5 nm.

Loading...
Thumbnail Image
Item

Gelation Kinetics and Mechanical Properties of Thiol-Tetrazole Methylsulfone Hydrogels Designed for Cell Encapsulation

2022, de Miguel‐Jiménez, Adrián, Ebeling, Bastian, Paez, Julieta I., Fink‐Straube, Claudia, Pearson, Samuel, del Campo, Aránzazu

Hydrogel precursors that crosslink within minutes are essential for the development of cell encapsulation matrices and their implementation in automated systems. Such timescales allow sufficient mixing of cells and hydrogel precursors under low shear forces and the achievement of homogeneous networks and cell distributions in the 3D cell culture. The previous work showed that the thiol-tetrazole methylsulfone (TzMS) reaction crosslinks star-poly(ethylene glycol) (PEG) hydrogels within minutes at around physiological pH and can be accelerated or slowed down with small pH changes. The resulting hydrogels are cytocompatible and stable in cell culture conditions. Here, the gelation kinetics and mechanical properties of PEG-based hydrogels formed by thiol-TzMS crosslinking as a function of buffer, crosslinker structure and degree of TzMS functionality are reported. Crosslinkers of different architecture, length and chemical nature (PEG versus peptide) are tested, and degree of TzMS functionality is modified by inclusion of RGD cell-adhesive ligand, all at concentration ranges typically used in cell culture. These studies corroborate that thiol/PEG-4TzMS hydrogels show gelation times and stiffnesses that are suitable for 3D cell encapsulation and tunable through changes in hydrogel composition. The results of this study guide formulation of encapsulating hydrogels for manual and automated 3D cell culture.

Loading...
Thumbnail Image
Item

Gelation kinetics of thiol-methylsulfone (MS) hydrogel formulations for 3D cell culture

2022, de Miguel-Jiménez, Adrián, Ebeling, Bastian, Paez, Julieta I., Fink-Straube, Claudia, Pearson, Samuel, del Campo, Aranzazu

Crosslinking chemistries that allow hydrogel formation within minutes are essential to achieve homogeneous networks and cell distributions in 3D cell culture. Thiol-methylsulfone (MS) crosslinking chemistry offers minutes-scale gelation under near-physiological conditions showing many desirable attributes for 3D cell encapsulation. Here we investigate the gelation kinetics and mechanical properties of PEG-based hydrogels formed by thiol-tetrazole methylsulfone (TzMS) crosslinking as a function of buffer, crosslinker structure, and degree of TzMS functionalization. Appropriate buffer selection ensured constant pH throughout crosslinking. The formulation containing cell adhesive ligand RGD and enzymatically-degradable peptide VPM gelled in ca. 4 min at pH 7.5, and stiffness could be increased from hundreds of Pascals to > 1 kPa by using excess VPM. The gelation times and stiffnesses for these hydrogels are highly suitable for 3D cell encapsulations, and pave the way for reliable 3D cell culture workflows in pipetting robots.

Loading...
Thumbnail Image
Item

Wet-Spinning of Biocompatible Core–Shell Polyelectrolyte Complex Fibers for Tissue Engineering

2020, Cui, Qing, Bell, Daniel Josef, Rauer, Sebastian Bernhard, Wessling, Matthias

Polyelectrolyte complex fibers (PEC fibers) have great potential with regard to biomedical applications as they can be fabricated from biocompatible and water-soluble polyelectrolytes under mild process conditions. The present publication describes a novel method for the continuous fabrication of PEC fibers in a water-based wet-spinning process by interfacial complexation within a core–shell spinneret. This process combines the robustness and flexibility of nonsolvent-induced phase separation (NIPS) spinning processes conventionally used in the membrane industry with the complexation between oppositely charged polyelectrolytes. The produced fibers demonstrate a core–shell structure with a low-density core and a highly porous polyelectrolyte complex shell of ≈800 μm diameter. In the case of chitosan and polystyrene sulfonate (PSS), mechanical fiber properties could be enhanced by doping the PSS with poly(ethylene oxide) (PEO). The resulting CHI/PSS-PEO fibers present a Young modulus of 3.78 GPa and a tensile strength of 165 MPa, which is an excellent combination of elongation at break and break stress compared to literature. The suitability of the CHI/PSS-PEO fibers as a scaffold for cell culture applications is verified by a four-day cultivation of human HeLa cells on PEO-reinforced fibers with a subsequent analysis of cell viability by fluorescence-based live/dead assay. © 2020 The Authors. Published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Scanning electron microscopy preparation of the cellular actin cortex: A quantitative comparison between critical point drying and hexamethyldisilazane drying

2021, Schu, Moritz, Terriac, Emmanuel, Koch, Marcus, Paschke, Stephan, Lautenschläger, Franziska, Flormann, Daniel A.D.

The cellular cortex is an approximately 200-nm-thick actin network that lies just beneath the cell membrane. It is responsible for the mechanical properties of cells, and as such, it is involved in many cellular processes, including cell migration and cellular interactions with the environment. To develop a clear view of this dense structure, high-resolution imaging is essential. As one such technique, electron microscopy, involves complex sample preparation procedures. The final drying of these samples has significant influence on potential artifacts, like cell shrinkage and the formation of artifactual holes in the actin cortex. In this study, we compared the three most used final sample drying procedures: critical-point drying (CPD), CPD with lens tissue (CPD-LT), and hexamethyldisilazane drying. We show that both hexamethyldisilazane and CPD-LT lead to fewer artifactual mesh holes within the actin cortex than CPD. Moreover, CPD-LT leads to significant reduction in cell height compared to hexamethyldisilazane and CPD. We conclude that the final drying procedure should be chosen according to the reduction in cell height, and so CPD-LT, or according to the spatial separation of the single layers of the actin cortex, and so hexamethyldisilazane.

Loading...
Thumbnail Image
Item

Towards a Biohybrid Lung: Endothelial Cells Promote Oxygen Transfer through Gas Permeable Membranes

2017, Menzel, Sarah, Finocchiaro, Nicole, Donay, Christine, Thiebes, Anja Lena, Hesselmann, Felix, Arens, Jutta, Djeljadini, Suzana, Wessling, Matthias, Schmitz-Rode, Thomas, Jockenhoevel, Stefan, Cornelissen, Christian Gabriel

In patients with respiratory failure, extracorporeal lung support can ensure the vital gas exchange via gas permeable membranes but its application is restricted by limited long-term stability and hemocompatibility of the gas permeable membranes, which are in contact with the blood. Endothelial cells lining these membranes promise physiological hemocompatibility and should enable prolonged application. However, the endothelial cells increase the diffusion barrier of the blood-gas interface and thus affect gas transfer. In this study, we evaluated how the endothelial cells affect the gas exchange to optimize performance while maintaining an integral cell layer. Human umbilical vein endothelial cells were seeded on gas permeable cell culture membranes and cultivated in a custom-made bioreactor. Oxygen transfer rates of blank and endothelialized membranes in endothelial culture medium were determined. Cell morphology was assessed by microscopy and immunohistochemistry. Both setups provided oxygenation of the test fluid featuring small standard deviations of the measurements. Throughout the measuring range, the endothelial cells seem to promote gas transfer to a certain extent exceeding the blank membranes gas transfer performance by up to 120%. Although the underlying principles hereof still need to be clarified, the results represent a significant step towards the development of a biohybrid lung.