Search Results

Now showing 1 - 2 of 2
  • Item
    Towards the automatic detection of social biomarkers in autism spectrum disorder: introducing the simulated interaction task (SIT)
    ([Basingstoke] : Macmillan, 2020) Drimalla, Hanna; Scheffer, Tobias; Landwehr, Niels; Baskow, Irina; Roepke, Stefan; Behnia, Behnoush; Dziobek, Isabel
    Social interaction deficits are evident in many psychiatric conditions and specifically in autism spectrum disorder (ASD), but hard to assess objectively. We present a digital tool to automatically quantify biomarkers of social interaction deficits: the simulated interaction task (SIT), which entails a standardized 7-min simulated dialog via video and the automated analysis of facial expressions, gaze behavior, and voice characteristics. In a study with 37 adults with ASD without intellectual disability and 43 healthy controls, we show the potential of the tool as a diagnostic instrument and for better description of ASD-associated social phenotypes. Using machine-learning tools, we detected individuals with ASD with an accuracy of 73%, sensitivity of 67%, and specificity of 79%, based on their facial expressions and vocal characteristics alone. Especially reduced social smiling and facial mimicry as well as a higher voice fundamental frequency and harmony-to-noise-ratio were characteristic for individuals with ASD. The time-effective and cost-effective computer-based analysis outperformed a majority vote and performed equal to clinical expert ratings. © 2020, The Author(s).
  • Item
    Machine Learning for Determining Interactions between Air Pollutants and Environmental Parameters in Three Cities of Iran
    (Basel : MDPI, 2022) Rad, Abdullah Kaviani; Shamshiri, Redmond R.; Naghipour, Armin; Razmi, Seraj-Odeen; Shariati, Mohsen; Golkar, Foroogh; Balasundram, Siva K.
    Air pollution, as one of the most significant environmental challenges, has adversely affected the global economy, human health, and ecosystems. Consequently, comprehensive research is being conducted to provide solutions to air quality management. Recently, it has been demonstrated that environmental parameters, including temperature, relative humidity, wind speed, air pressure, and vegetation, interact with air pollutants, such as particulate matter (PM), NO2, SO2, O3, and CO, contributing to frameworks for forecasting air quality. The objective of the present study is to explore these interactions in three Iranian metropolises of Tehran, Tabriz, and Shiraz from 2015 to 2019 and develop a machine learning-based model to predict daily air pollution. Three distinct assessment criteria were used to assess the proposed XGBoost model, including R squared (R2), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). Preliminary results showed that although air pollutants were significantly associated with meteorological factors and vegetation, the formulated model had low accuracy in predicting (R2PM2.5 = 0.36, R2PM10 = 0.27, R2NO2 = 0.46, R2SO2 = 0.41, R2O3 = 0.52, and R2CO = 0.38). Accordingly, future studies should consider more variables, including emission data from manufactories and traffic, as well as sunlight and wind direction. It is also suggested that strategies be applied to minimize the lack of observational data by considering second-and third-order interactions between parameters, increasing the number of simultaneous air pollution and meteorological monitoring stations, as well as hybrid machine learning models based on proximal and satellite data.