Search Results

Now showing 1 - 10 of 1195
  • Item
    Synthesis and Characterization of Oxide Chloride Sr2VO3Cl, a Layered S = 1 Compound
    (Washington, DC : ACS Publications, 2023) Sannes, Johnny A.; Kizhake Malayil, Ranjith K.; Corredor, Laura T.; Wolter, Anja U. B.; Grafe, Hans-Joachim; Valldor, Martin
    The mixed-anion compound with composition Sr2VO3Cl has been synthesized for the first time, using the conventional high-temperature solid-state synthesis technique in a closed silica ampule under inert conditions. This compound belongs to the known Sr2TmO3Cl (Tm = Sc, Mn, Fe, Co, Ni) family, but with Tm = V. All homologues within this family can be described with the tetragonal space group P4/nmm (No. 129); from a Rietveld refinement of powder X-ray diffraction data on the Tm = V homologue, the unit cell parameters were determined to a = 3.95974(8) and c = 14.0660(4) Å, and the atomic parameters in the crystal structure could be estimated. The synthesized powder is black, implying that the compound is a semiconductor. The magnetic investigations suggest that Sr2VO3Cl is a paramagnet at high temperatures, exhibiting a μeff = 2.0 μB V-1 and antiferromagnetic (AFM) interactions between the magnetic vanadium spins (θCW = −50 K), in line with the V-O-V advantageous super-exchange paths in the V-O layers. Specific heat capacity studies indicate two small anomalies around 5 and 35 K, which however are not associated with long-range magnetic ordering. 35Cl ss-NMR investigations suggest a slow spin freezing below 4.2 K resulting in a glassy-like spin ground state.
  • Item
    Segregated Network Polymer Composites with High Electrical Conductivity and Well Mechanical Properties based on PVC, P(VDFTFE), UHMWPE, and rGO
    (Washington, DC : ACS Publications, 2020) Shiyanova, Kseniya A.; Gudkov, Maksim V.; Gorenberg, Arkady Ya; Rabchinskii, Maxim K.; Smirnov, Dmitry A.; Shapetina, Maria A.; Gurinovich, Tatiana D.; Goncharuk, Galina P.; Kirilenko, Demid A.; Bazhenov, Sergey L.; Melnikov, Valery P.
    The formation of a segregated network structure (wittingly uneven distribution of a filler) is one of the most promising strategies for the fabrication of electrically conductive polymer composites at present. However, the simultaneous achievement of high values of electrical conductivity with the retention of well mechanical properties within this approach remains a great challenge. Here, by means of X-ray photoelectron spectra (XPS), near-edge X-ray absorption fine structure (NEXAFS) spectra, scanning electron microscopy (SEM), dielectric spectroscopy, and compression engineering stress-strain curve analysis, we have studied the effect of a segregated network structure on the electrical conductivity and mechanical properties of a set of polymer composites. The composites were prepared by applying graphene oxide (GO) with ultralarge basal plane size (up to 150 μm) onto the surface of polymer powder particles, namely, poly(vinyl chloride) (PVC), poly(vinylidene fluoride-co-tetrafluoroethylene) (P(VDF-TFE)), and ultrahigh-molecular-weight poly(ethylene) (UHMWPE) with the subsequent GO reduction and composite hot pressing. A strong dependence of the segregated network polymer composites' physical properties on the polymer matrix was demonstrated. Particularly, 12 orders of magnitude rise of the polymers' electrical conductivity up to 0.7 S/m was found upon the incorporation of the reduced GO (rGO). A 17% increase in the P(VDF-TFE) elastic modulus filled by 1 wt % of rGO was observed. Fracture strength of PVC/rGO at 0.5 wt % content of the filler was demonstrated to decrease by fourfold. At the same time, the change in strength was not significant for P(VDF-TFE) and UHMWPE composites in comparison with pure polymers. Our results show a promise to accelerate the development of new composites for energy applications, such as metal-free supercapacitor plates and current collectors of lithium-ion batteries, bipolar plates of proton-exchange membrane fuel cells, antistatic elements of various electronic devices, etc. © 2020 American Chemical Society.
  • Item
    Structure-property relationships in nanoporous metallic glasses
    (Amsterdam [u.a.] : Elsevier Science, 2016) Şopu, D.; Soyarslan, C.; Sarac, B.; Bargmann, S.; Stoica, M.; Eckert, J.
    We investigate the influence of various critical structural aspects such as pore density, distribution, size and number on the deformation behavior of nanoporous Cu64 Zr36 glass. By using molecular dynamics and finite element simulations an effective strategy to control the strain localization in nanoporous heterostructures is provided. Depending on the pore distribution in the heterostructure, upon tensile loading the nanoporous glass showed a clear transition from a catastrophic fracture to localized deformation in one dominant shear band, and ultimately to homogeneous plastic flow mediated by a pattern of multiple shear bands. The change in the fracture mechanism from a shear band slip to necking-like homogeneous flow is quantitative interpreted by calculating the critical shear band length. Finally, we identify the most effective heterostructure with enhanced ductility as compared to the monolithic bulk metallic glass. The heterostructure with a fraction of pores of about 3% distributed in such a way that the pores do not align along the maximum shear stress direction shows higher plasticity while retaining almost the same strength as the monolithic glass. Our results provide clear evidence that the mechanical properties of nanoporous glassy materials can be tailored by carefully controlling the design parameters.
  • Item
    Sperm Micromotors for Cargo Delivery through Flowing Blood
    (Washington, DC : American Chemical Society, 2020) Xu, Haifeng; Medina-Sánchez, Mariana; Maitz, Manfred F.; Werner, Carsten; Schmidt, Oliver G.
    Micromotors are recognized as promising candidates for untethered micromanipulation and targeted cargo delivery in complex biological environments. However, their feasibility in the circulatory system has been limited due to the low thrust force exhibited by many of the reported synthetic micromotors, which is not sufficient to overcome the high flow and complex composition of blood. Here we present a hybrid sperm micromotor that can actively swim against flowing blood (continuous and pulsatile) and perform the function of heparin cargo delivery. In this biohybrid system, the sperm flagellum provides a high propulsion force while the synthetic microstructure serves for magnetic guidance and cargo transport. Moreover, single sperm micromotors can assemble into a train-like carrier after magnetization, allowing the transport of multiple sperm or medical cargoes to the area of interest, serving as potential anticoagulant agents to treat blood clots or other diseases in the circulatory system.
  • Item
    Single-Electron Lanthanide-Lanthanide Bonds Inside Fullerenes toward Robust Redox-Active Molecular Magnets
    (Washington, DC : ACS Publications, 2019) Liu, Fupin; Spree, Lukas; Krylov, Denis S.; Velkos, Georgios; Avdoshenko, Stanislav M.; Popov, Alexey A.
    A characteristic phenomenon of lanthanide-fullerene interactions is the transfer of metal valence electrons to the carbon cage. With early lanthanides such as La, a complete transfer of six valence electrons takes place for the metal dimers encapsulated in the fullerene cage. However, the low energy of the σ-type Ln-Ln bonding orbital in the second half of the lanthanide row limits the Ln2 → fullerene transfer to only five electrons. One electron remains in the Ln-Ln bonding orbital, whereas the fullerene cage with a formal charge of -5 is left electron-deficient. Such Ln2@C80 molecules are unstable in the neutral form but can be stabilized by substitution of one carbon atom by nitrogen to give azafullerenes Ln2@C79N or by quenching the unpaired electron on the fullerene cage by reacting it with a chemical such as benzyl bromide, transforming one sp2 carbon into an sp3 carbon and yielding the monoadduct Ln2@C80(CH2Ph). Because of the presence of the Ln-Ln bonding molecular orbital with one electron, the Ln2@C79N and Ln2@C80(R) molecules feature a unique single-electron Ln-Ln bond and an unconventional +2.5 oxidation state of the lanthanides.In this Account, which brings together metallofullerenes, molecular magnets, and lanthanides in unconventional valence states, we review the progress in the studies of dimetallofullerenes with single-electron Ln-Ln bonds and highlight the consequences of the unpaired electron residing in the Ln-Ln bonding orbital for the magnetic interactions between Ln ions. Usually, Ln···Ln exchange coupling in polynuclear lanthanide compounds is weak because of the core nature of 4f electrons. However, when interactions between Ln centers are mediated by a radical bridge, stronger coupling may be achieved because of the diffuse nature of radical-based orbitals. Ultimately, when the role of a radical bridge is played by a single unpaired electron in the Ln-Ln bonding orbital, the strength of the exchange coupling is increased dramatically. Giant exchange coupling in endohedral Ln2 dimers is combined with a rather strong axial ligand field exerted on the lanthanide ions by the fullerene cage and the excess electron density localized between two Ln ions. As a result, Ln2@C79N and Ln2@C80(CH2Ph) compounds exhibit slow relaxation of magnetization and exceptionally high blocking temperatures for Ln = Dy and Tb. At low temperatures, the [Ln3+-e-Ln3+] fragment behaves as a single giant spin. Furthermore, the Ln-Ln bonding orbital in dimetallofullerenes is redox-active, which allows its population to be changed by electrochemical reactions, thus changing the magnetic properties because the change in the number of electrons residing in the Ln-Ln orbital affects the magnetic structure of the molecule. © 2019 American Chemical Society.
  • Item
    Self-propelled micromotors for cleaning polluted water
    (Washington, DC : ACS, 2013) Soler, L.; Magdanz, V.; Fomin, V.M.; Sanchez, S.; Schmidt, O.G.
    We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction-diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water.
  • Item
    Origami-Inspired Shape Memory Folding Microactuator
    (Basel : MDPI, 2020) Seigner, Lena; Bezsmertna, Olha; Fähler, Sebastian; Tshikwand, Georgino; Wendler, Frank; Kohl, Manfred
    This paper presents the design, fabrication and performance of origami-based folding microactuators based on a cold-rolled NiTi foil of 20 µm thickness showing the one-way shape memory effect. Origami refers to a variety of techniques of transforming planar sheets into three-dimensional (3D) structures by folding, which has been introduced in science and engineering for, e.g., assembly and robotics. Here, NiTi microactuators are interconnected to rigid sections (tiles) forming an initial planar system that self-folds into a set of predetermined 3D shapes upon heating. While this concept has been demonstrated at the macro scale, we intend to transfer this concept into microtechnology by combining state-of-the art methods of micromachining. NiTi foils are micromachined by laser cutting or photolithography to achieve double-beam structures allowing for direct Joule heating with an electrical current. A thermo-mechanical treatment is used for shape setting of as-received specimens to reach a maximum folding angle of 180°. The bending moments, bending radii and load-dependent folding angles upon Joule heating are evaluated. The shape setting process is particularly effective for small bending radii, which, however generates residual plastic strain. After shape setting, unloaded beam structures show recoverable bending deflection between 0° and 140° for a maximum heating power of 900 mW. By introducing additional loads to account for the effect of the tiles, the smooth folding characteristic evolves into a sharp transition, whereby full deflection up to 180° is reached. The achieved results are an important step towards the development of cooperative multistable microactuator systems for 3D self-assembly.
  • Item
    Structural and mechanical characterization of heterogeneities in a CuZr-based bulk metallic glass processed by high pressure torsion
    (Amsterdam [u.a.] : Elsevier Science, 2018) Ebner, Christian; Escher, Benjamin; Gammer, Christoph; Eckert, Jürgen; Pauly, Simon; Rentenberger, Christian
    Cu45Zr45Al5Ag5 bulk metallic glass samples, processed by high pressure torsion (HPT) under various conditions, were characterized using synchrotron X-ray diffraction, nanoindentation, differential scanning calorimetry, atomic force and transmission electron microscopy. The experimental results clearly show that HPT modifies the amorphous structure by increasing the mean atomic volume. The level of rejuvenation, correlated with the excess mean atomic volume, is enhanced at higher shear strains as inferred from relaxation enthalpies. By mapping of structural and mechanical quantities, the strain-induced rejuvenated state is characterized on cross-sectional HPT samples on a local scale. A clear correlation both between elastic and plastic softening and between softening and excess mean atomic volume is obtained. But also the heterogeneity of the HPT induced rejuvenation is revealed, resulting in the formation of highly strain-softened regions next to less-deformed ones. A hardness drop of up to 20% is associated with an estimated increase of the mean atomic volume of up to 0.75%. Based on synchrotron X-ray diffraction and nanoindentation measurements it is concluded that elastic fluctuations are enhanced in the rejuvenated material on different length scales down to atomic scale. Furthermore, the calculated flexibility volume and the corresponding average mean square atomic displacement is increased. The plastic response during nanoindentation indicates that HPT processing promotes a more homogeneous-like deformation.
  • Item
    Structure evolution of soft magnetic (Fe36Co36B19.2Si4.8Nb4)100-xCux (x = 0 and 0.5) bulk glassy alloys
    (Amsterdam [u.a.] : Elsevier Science, 2015) Stoica, Mihai; Ramasamy, Parthiban; Kaban, Ivan; Scudino, Sergio; Nicoara, Mircea; Vaughan, Gavin B.M.; Wright, Jonathan; Kumar, Ravi; Eckert, Jürgen
    Fully amorphous rods with diameters up to 2 mm diameter were obtained upon 0.5 at.% Cu addition to the Fe36Co36B19.2Si4.8Nb4 bulk metallic glass. The Cu-added glass shows a very good thermal stability but, in comparison with the Cu-free base alloy, the entire crystallization behavior is drastically changed. Upon heating, the glassy (Fe36Co36B19.2Si4.8Nb4)99.5Cu0.5 samples show two glass transitions-like events, separated by an interval of more than 100 K, in between which a bcc-(Fe,Co) solid solution is formed. The soft magnetic properties are preserved upon Cu-addition and the samples show a saturation magnetization of 1.1 T combined with less than 2 A/m coercivity. The relaxation behavior prior to crystallization, as well as the crystallization behavior, were studied by time-resolved X-ray diffraction using synchrotron radiation. It was found that both glassy alloys behave similar at temperatures below the glass transition. Irreversible structural transformations take place when approaching the glass transition and in the supercooled liquid region.