Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Numerical analysis for nematic electrolytes

2020, Baňas, L'ubomír, Lasarzik, Robert, Prohl, Andreas

We consider a system of nonlinear PDEs modeling nematic electrolytes, and construct a dissipative solution with the help of its implementable, structure-inheriting space-time discretization. Computational studies are performed to study the mutual effects of electric, elastic, and viscous effects onto the molecules in a nematic electrolyte.

Loading...
Thumbnail Image
Item

Local approximation of arbitrary functions by solutions of nonlocal equations

2016, Dipierro, Serena, Savin, Ovidiu, Valdinoci, Enrico

We show that any function can be locally approximated by solutions of prescribed linear equations of nonlocal type. In particular, we show that every function is locally s-caloric, up to a small error. The case of non-elliptic and non-parabolic operators is taken into account as well.

Loading...
Thumbnail Image
Item

All functions are locally s-harmonic up to a small error

2014, Dipierro, Serena, Savin, Ovidiu, Valdinoci, Enrico

We show that we can approximate every function f Ck (B1) with a s-harmonic function in B1 that vanishes outside a compact set. That is, s-harmonic functions are dense in Ck loc. This result is clearly in contrast with the rigidity of harmonic functions in the classical case and can be viewed as a purely nonlocal feature.

Loading...
Thumbnail Image
Item

Convergence rate estimates for Trotter product approximations of solution operators for non-autonomous Cauchy problems

2016, Neidhardt, Hagen, Stephan, Artur, Zagrebnov, Valentin A.

In the present paper we advocate the Howland-Evans approach to solution of the abstract non-autonomous Cauchy problem (non-ACP) in a separable Banach space X. The main idea is to reformulate this problem as an autonomous Cauchy problem (ACP) in a new Banach space Lp(I;X), p 2 [1;1), consisting of X-valued functions on the time-interval I. The fundamental observation is a one-to-one correspondence between solution operators (propagators) for a non-ACP and the corresponding evolution semigroups for ACP in Lp(I;X). We show that the latter also allows to apply a full power of the operatortheoretical methods to scrutinise the non-ACP including the proof of the Trotter product approximation formulae with operator-norm estimate of the rate of convergence. The paper extends and improves some recent results in this direction in particular for Hilbert spaces.