Search Results

Now showing 1 - 10 of 26
  • Item
    Toward light‐regulated living biomaterials
    (Hoboken, NJ : Wiley, 2018) Sankaran, Shrikrishnan; Zhao, Shifang; Muth, Christina; Paez, Julieta; Del Campo, Aránzazu
    Living materials are an emergent material class, infused with the productive,adaptive, and regenerative properties of living organisms. Property regulation in living materials requires encoding responsive units in the living components to allow external manipulation of their function. Here, an optoregulated Escherichia coli (E. coli)-based living biomaterial that can be externally addressed using light to interact with mammalian cells is demonstrated. This is achieved by using a photoactivatable inducer of gene expression and bacterial surface display technology to present an integrin-specific miniprotein on the outer membrane of an endotoxin-free E. coli strain. Hydrogel surfaces functionalized with the bacteria can expose cell adhesive molecules upon in situ light-activation, and trigger cell adhesion. Surface immobilized bacteria are able to deliver a fluorescent protein to the mammalian cells with which they are interacting, indicating the potential of such a bacterial material to deliver molecules to cells in a targeted manner.
  • Item
    Combining Battery‐Type and Pseudocapacitive Charge Storage in Ag/Ti3C2Tx MXene Electrode for Capturing Chloride Ions with High Capacitance and Fast Ion Transport
    (Hoboken, NJ : Wiley, 2020) Liang, Mingxing; Wang, Lei; Presser, Volker; Dai, Xiaohu; Yu, Fei; Ma, Jie
    The recent advances in chloride‐ion capturing electrodes for capacitive deionization (CDI) are limited by the capacity, rate, and stability of desalination. This work introduces Ti3C2Tx/Ag synthesized via a facile oxidation‐reduction method and then uses it as an anode for chloride‐ion capture in CDI. Silver nanoparticles are formed successfully and uniformly distributed with the layered‐structure of Ti3C2Tx. All Ti3C2Tx/Ag samples are hydrophilic, which is beneficial for water desalination. Ti3C2Tx/Ag samples with a low charge transfer resistance exhibit both pseudocapacitive and battery behaviors. Herein, the Ti3C2Tx/Ag electrode with a reaction time of 3 h exhibits excellent desalination performance with a capacity of 135 mg Cl− g−1 at 20 mA g−1 in a 10 × 10−3 m NaCl solution. Furthermore, low energy consumption of 0.42 kWh kg−1 Cl− and a desalination rate of 1.5 mg Cl− g−1 min−1 at 50 mA g−1 is achieved. The Ti3C2Tx/Ag system exhibits fast rate capability, high desalination capacity, low energy consumption, and excellent cyclability, which can be ascribed to the synergistic effect between the battery and pseudocapacitive behaviors of the Ti3C2Tx/Ag hybrid material. This work provides fundamental insight into the coupling of battery and pseudocapacitive behaviors during Cl− capture for electrochemical desalination.
  • Item
    Carbons and electrolytes for advanced supercapacitors
    (Hoboken, NJ : Wiley, 2014) Presser, Volker
    Electrical energy storage (EES) is one of the most critical areas of technological research around the world. Storing and efficiently using electricity generated by intermittent sources and the transition of our transportation fleet to electric drive depend fundamentally on the development of EES systems with high energy and power densities. Supercapacitors are promising devices for highly efficient energy storage and power management, yet they still suffer from moderate energy densities compared to batteries. To establish a detailed understanding of the science and technology of carbon/carbon supercapacitors, this review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes. We summarize the key aspects of various carbon materials synthesized for use in supercapacitors. With the objective of improving the energy density, the last two sections are dedicated to strategies to increase the capacitance by either introducing pseudocapacitive materials or by using novel electrolytes that allow to increasing the cell voltage. In particular, advances in ionic liquids, but also in the field of organic electrolytes, are discussed and electrode mass balancing is expanded because of its importance to create higher performance asymmetric electrochemical capacitors.
  • Item
    Funnel-shaped microstructures for strong reversible adhesion
    (Hoboken, NJ : Wiley, 2017) Fischer, Sarah C.L.; Groß, Katja; Abad, Oscar Torrents; Becker, MIchael M.; Park, Euiyoung; Hensel, René; Arzt, Eduard
    The potential of a new design of adhesive microstructures in the micrometer range for enhanced dry adhesion is investigated. Using a two-photon lithography system, complex 3D master structures of funnel-shaped microstructures are fabricated for replication into poly(ethylene glycol) dimethacrylate polymer. The diameter, the flap thickness, and the opening angle of the structures are varied systematically. The adhesion of single structures is characterized using a triboindenter system equipped with a flat diamond punch. The pull-off stresses obtained reaches values up to 5.6 MPa, which is higher than any values reported in literature for artificial dry adhesives. Experimental and numerical results suggest a characteristic attachment mechanism that leads to intimate contact formation from the edges toward the center of the structures. van der Waals interactions most likely dominate the adhesion, while contributions by suction or capillarity play only a minor role. Funnel-shaped microstructures are a promising concept for strong and reversible adhesives, applicable in novel pick and place handling systems or wall-walking robots.
  • Item
    Contact Aging Enhances Adhesion of Micropatterned Silicone Adhesives to Glass Substrates
    (Hoboken, NJ : Wiley, 2020) Thiemecke, Jonathan; Hensel, René
    The transfer of biological concepts into synthetic micropatterned adhesives has recently enabled a new generation of switchable, reversible handling devices. Over the last two decades, many design principles have been explored that helped to understand the underlying mechanics and to optimize such adhesives for certain applications. An aspect that has been overlooked so far is the influence of longer hold times on the adhesive contacts. Exemplarily, the pull‐off stress and work of separation of a micropatterned adhesive specimen are enhanced by factors 3 and 6, respectively, after 1000 min in contact with a glass substrate. In addition to such global measures, the increase of adhesion of all individual micropillars is analyzed. It is found that contact aging varied across the microarray, as it drastically depends on local conditions. Despite great differences on the micropillar scale, the adhesion of entire specimens increased with very similar power laws, as this is determined by the mean contact ageing of the individual structures. Overall, contact aging must be critically evaluated before using micropatterned adhesives, especially for long‐term fixations and material combinations that are chemically attractive to each other.
  • Item
    Flexible distributed Bragg reflectors from nanocolumnar templates
    (Hoboken, NJ : Wiley, 2015) Calvo, Mauricio E.; González-García, Lola; Parra-Barranco, Julián; Barranco, Angel; Jiménez-Solano, Alberto; González-Elipe, Agustín R.; Míguez, Hernán
    A flexible distributed Bragg reflector is made by the infiltration of a nanocolumnar array with polydimethyl siloxane oligomers. The high optical reflectance displayed by the final material is a direct consequence of the high refractive index contrast of the columnar layers whereas the structural stability is due to the polymer properties.
  • Item
    Label‐Free Imaging of Cholesterol Assemblies Reveals Hidden Nanomechanics of Breast Cancer Cells
    (Hoboken, NJ : Wiley, 2020) Dumitru, Andra C.; Mohammed, Danahe; Maja, Mauriane; Yang, Jinsung; Verstraeten, Sandrine; del Campo, Aranzazu; Mingeot-Leclercq, Marie-Paule; Tyteca, Donatienne; Alsteens, David
    Tumor cells present profound alterations in their composition, structural organization, and functional properties. A landmark of cancer cells is an overall altered mechanical phenotype, which so far are linked to changes in their cytoskeletal regulation and organization. Evidence exists that the plasma membrane (PM) of cancer cells also shows drastic changes in its composition and organization. However, biomechanical characterization of PM remains limited mainly due to the difficulties encountered to investigate it in a quantitative and label‐free manner. Here, the biomechanical properties of PM of a series of MCF10 cell lines, used as a model of breast cancer progression, are investigated. Notably, a strong correlation between the cell PM elasticity and oncogenesis is observed. The altered membrane composition under cancer progression, as emphasized by the PM‐associated cholesterol levels, leads to a stiffening of the PM that is uncoupled from the elastic cytoskeletal properties. Conversely, cholesterol depletion of metastatic cells leads to a softening of their PM, restoring biomechanical properties similar to benign cells. As novel therapies based on targeting membrane lipids in cancer cells represent a promising approach in the field of anticancer drug development, this method contributes to deciphering the functional link between PM lipid content and disease.
  • Item
    Photoactivatable Hsp47: A tool to control and regulate collagen secretion & assembly
    (Hoboken, NJ : Wiley, 2018) Khan, Essak; Sankaran, Shrikrishnan; Paez, Julieta; Muth, Christina; Han, Mitchell; Del Campo, Aránzazu
    Collagen is the most abundant structural protein in mammals and is crucial for the mechanical integrity of tissues. Hsp47, an endoplasmic reticulum resident collagen-specific chaperone, is involved in collagen biosynthesis and plays a fundamental role in the folding, stability, and intracellular transport of procollagen triple helices. This work reports on a photoactivatable derivative of Hsp47 that allows regulation of collagen biosynthesis within mammalian cells using light. Photoactivatable Hsp47 contains a non-natural light-responsive tyrosine (o-nitro benzyl tyrosine (ONBY)) at Tyr383 position of the protein sequence. This mutation renders Hsp47 inactive toward collagen binding. The inactive, photoactivatable protein is easily uptaken by cells within a few minutes of incubation, and accumulated at the endoplasmic reticulum via retrograde KDEL receptor-mediated uptake. Upon light exposure, the photoactivatable Hsp47 turns into functional Hsp47 in situ. The increased intracellular concentration of Hsp47 results in stimulated secretion of collagen. The ability to promote collagen synthesis on demand, with spatiotemporal resolution, and in diseased state cells is demonstrated in vitro. It is envisioned that photoactivatable Hsp47 allows unprecedented fundamental studies of collagen biosynthesis, matrix biology, and inspires new therapeutic concepts in biomedicine and tissue regeneration.
  • Item
    Quinone-decorated onion-like carbon/carbon fiber hybrid electrodes for high-rate supercapacitor applications
    (Hoboken, NJ : Wiley, 2015) Zeiger, Marco; Weingarth, Daniel; Presser, Volker
    The energy performance of carbon onions can be significantly enhanced by introducing pseudocapacitive materials, but this is commonly at the cost of power handling. In this study, a novel synergistic electrode preparation method was developed by using carbon-fiber substrates loaded with quinone-decorated carbon onions. The electrodes are free standing, binder free, extremely conductive, and the interfiber space filling overcomes the severely low apparent density commonly found for electrospun fibers. Electrochemical measurements were performed in organic and aqueous electrolytes. For both systems, a high electrochemical stability after 10 000 cycles was measured, as well as a long-term voltage floating test for the organic electrolyte. The capacitance in 1 M H2SO4 was 288 F g^−1 for the highest loading of quinones, which is similar to literature values, but with a very high power handling, showing more than 100 F g^−1 at a scan rate of 2 Vs^−1.
  • Item
    A novel universal algorithm for filament network tracing and cytoskeleton analysis
    (Hoboken, NJ : Wiley, 2021) Flormann, Daniel A.D.; Schu, Moritz; Terriac, Emmanuel; Thalla, Divyendu; Kainka, Lucina; Koch, Marcus; Gad, Annica K.B.; Lautenschläger, Franziska
    The rapid development of advanced microscopy techniques over recent decades has significantly increased the quality of imaging and our understanding of subcellular structures, such as the organization of the filaments of the cytoskeleton using fluorescence and electron microscopy. However, these recent improvements in imaging techniques have not been matched by similar development of techniques for computational analysis of the images of filament networks that can now be obtained. Hence, for a wide range of applications, reliable computational analysis of such two-dimensional methods remains challenging. Here, we present a new algorithm for tracing of filament networks. This software can extract many important parameters from grayscale images of filament networks, including the mesh hole size, and filament length and connectivity (also known as Coordination Number). In addition, the method allows sub-networks to be distinguished in two-dimensional images using intensity thresholding. We show that the algorithm can be used to analyze images of cytoskeleton networks obtained using different advanced microscopy methods. We have thus developed a new improved method for computational analysis of two-dimensional images of filamentous networks that has wide applications for existing imaging techniques. The algorithm is available as open-source software.