Search Results

Now showing 1 - 10 of 39
  • Item
    Cohesive detachment of an elastic pillar from a dissimilar substrate
    (Amsterdam : Elsevier, 2017) Fleck, Norman A.; Khaderi, Syed Nizamuddin; McMeeking, Robert M.; Arzt, Eduard
    The adhesion of micron-scale surfaces due to intermolecular interactions is a subject of in- tense interest spanning electronics, biomechanics and the application of soft materials to engineering devices. The degree of adhesion is sensitive to the diameter of micro-pillars in addition to the degree of elastic mismatch between pillar and substrate. Adhesion- strength-controlled detachment of an elastic circular cylinder from a dissimilar substrate is predicted using a Dugdale-type of analysis, with a cohesive zone of uniform tensile strength emanating from the interface corner. Detachment initiates when the opening of the cohesive zone attains a critical value, giving way to crack formation. When the cohe- sive zone size at crack initiation is small compared to the pillar diameter, the initiation of detachment can be expressed in terms of a critical value H c of the corner stress inten- sity. The estimated pull-offforce is somewhat sensitive to the choice of stick/slip boundary condition used on the cohesive zone, especially when the substrate material is much stiffer than the pillar material. The analysis can be used to predict the sensitivity of detachment force to the size of pillar and to the degree of elastic mismatch between pillar and sub- strate.
  • Item
    Datasets from a vapor diffusion mineral precipitation protocol for Dictyostelium stalks
    (Amsterdam : Elsevier, 2016) Eder, Magdalena; Muth, Christina; Weiss, Ingrid M.
    Datasets from a slow carbonate vapor diffusion and mineral precipitation protocol for Dictyostelium ECM and cellulose stalks show examples for composite materials obtained by an in vitro approach, which differs substantially from the in vivo approach reported in The Journal of Structural Biology, doi: 10.1016/j.jsb.2016.03.015 [1]. Methods for obtaining the datasets include bright field transmitted light microscopy, fluorescence microscopy, LC-PolScope birefringence microscopy, variable pressure scanning electron microscopy (VP-SEM/ESEM), and Raman imaging spectroscopy.
  • Item
    On the process of co-deformation and phase dissolution in a hard-soft immiscible CuCo alloy system during high-pressure torsion deformation
    (Amsterdam : Elsevier, 2016) Bachmaier, Andrea; Schmauch, Jörg; Aboulfadl, Hisham; Verch, Andreas; Motz, Christian
    In this study, dual phase Cusingle bondCo composites with a total immiscibility in the solid state and a very different initial phase strength are deformed by severe plastic deformation. Nanocrystalline supersaturated solid solutions are reached in all Cusingle bondCo composites independent of the initial composition. The deformation and mechanical mixing process is studied thoroughly by combining scanning electron microscopy, transmission electron microscopy, three-dimensional atom probe tomography and nanoindentation. The indentation hardness of the Cu and Co phase and its evolution as a function of the applied strain is linked to deformation and mechanical mixing process to gain a better understanding how the phase strength mismatch of the Cu and Co phase effects the amount of co-deformation and deformation-induced mixing. Our results show that co-deformation is not a necessary requirement to achieve mechanical mixing.
  • Item
    Ultrathin gold nanowires for transparent electronics: breaking barriers
    (Amsterdam : Elsevier, 2016) Gonzalez-Garcia, Lola; Maurer, Johannes H.M.; Reiser, Beate; Kanelidis, Ioannis; Kraus, Tobias
    Novel types of Transparent Conductive Materials (TCMs) based on metal nanostructures are discussed. Dispersed metal nanoparticles can be deposited from liquids with moderate thermal budgets to form conductive films that are suitable for thin-film solar cells, displays, touch screens, and nanoelectronics. We aim at new TCMs that combine high electrical conductivity with optical transparency and mechanical flexibility. Wet-processed films of randomly arranged metallic nanowires networks are commercially established and provide a relatively cost-effective, scalable production. Ultrathin gold nanowires (AuNWs) with diameters below 2 nm and high aspect ratios have recently become available. They combine mechanical flexibility, high optical transparency, and chemical inertness. AuNWs carry oleylamine capping ligands from synthesis that cause high contact resistances at their junctions. We investigated different annealing processes based on temperature and plasma treatment, to remove the ligands after deposition and to allow electrical conductivity. Their effect on the resulting nanostructure and on the material properties was studied. Scanning Electron Microscopy (SEM) and optical spectroscopy revealed changes in the microstructure for the different post-treatments. We found that the conductivity and the stability of the TCM depended strongly on its final microstructure. We demonstrate that the best results are obtained using H2-plasma treatment.
  • Item
    Performance evaluation of conductive additives for activated carbon supercapacitors in organic electrolyte
    (Amsterdam : Elsevier, 2016) Jäckel, Nicolas; Weingarth, Daniel; Schreiber, Anna; Krüner, Benjamin; Zeiger, Marco; Tolosa Rodriguez, Aura Monserrat; Aslan, Mesut; Presser, Volker
    In this study, we investigate two different activated carbons and four conductive additive materials, all produced in industrial scale from commercial suppliers. The two activated carbons differed in porosity: one with a narrow microporous pore size distribution, the other showed a broader micro-mesoporous pore structure. Electrochemical benchmarking was done in one molar tetraethylammonium tetrafluoroborate in acetonitrile. Comprehensive structural, chemical, and electrical characterization was carried out by varied techniques. This way, we correlate the electrochemical performance with composite electrode properties, such as surface area, pore volume, electrical conductivity, and mass loading for different admixtures of conductive additives to activated carbon. The electrochemical rate handling (from 0.1 A g−1 to 10 A g−1) and long-time stability testing via voltage floating (100 h at 2.7 V cell voltage) show the influence of functional surface groups on carbon materials and the role of percolation of additive particles.
  • Item
    Thermal conductivity and temperature profiles in carbon electrodes for supercapacitors
    (Amsterdam : Elsevier, 2014) Burheim, Odne S.; Aslan, Mesut; Atchison, Jennifer S.; Presser, Volker
    The thermal conductivity of supercapacitor film electrodes composed of activated carbon (AC), AC with 15 mass% multi-walled carbon nanotubes (MWCNTs), AC with 15 mass% onion-like carbon (OLC), and only OLC, all mixed with polymer binder (polytetrafluoroethylene), has been measured. This was done for dry electrodes and after the electrodes have been saturated with an organic electrolyte (1 M tetraethylammonium-tetrafluoroborate in acetonitrile, TEA-BF4). The thermal conductivity data was implemented in a simple model of generation and transport of heat in a cylindrical cell supercapacitor systems. Dry electrodes showed a thermal conductivity in the range of 0.09-0.19 W K-1 m-1 and the electrodes soaked with an organic electrolyte yielded values for the thermal conductivity between 0.42 and 0.47 W K-1 m-1. It was seen that the values related strongly to the porosity of the carbon electrode materials. Modeling of the internal temperature profiles of a supercapacitor under conditions corresponding to extreme cycling demonstrated that only a moderate temperature gradient of several degrees Celsius can be expected and which depends on the ohmic resistance of the cell as well as the wetting of the electrode materials.
  • Item
    Electrospinning and electrospraying of silicon oxycarbide-derived nanoporous carbon for supercapacitor electrodes
    (Amsterdam : Elsevier, 2016) Tolosa, Aura; Krüner, Benjamin; Jäckel, Nicolas; Aslan, Mesut; Vakifahmetoglu, Cekdar; Presser, Volker
    In this study, carbide-derived carbon fibers from silicon oxycarbide precursor were synthesized by electrospinning of a commercially available silicone resin without adding a carrier polymer for the electrospinning process. The electrospun fibers were pyrolyzed yielding SiOC. Modifying the synthesis procedure, we were able to obtain electrosprayed SiOC beads instead of fibers. After chlorine treatment, nanoporous carbon with a specific surface area of up to 2394 m2·g-1 was obtained (3089 m2·g-1 BET). Electrochemical characterization of the SiOC-CDC either as free-standing fiber mat electrodes or polymer-bound bead films was performed in 1 M tetraethylammonium tetrafluoroborate in acetonitrile (TEA-BF4 in ACN). The electrospun fibers presented a high gravimetric capacitance of 135 F·g-1 at 10 mV·s-1 and a very high power handling, maintaining 63 % of the capacitance at 100 A·g-1. Comparative data of SiOC-CDC beads and fibers show enhanced power handling for fiber mats only when the fiber network is intact, that is, a lowered performance was observed when using crushed mats that employ polymer binder.
  • Item
    Numerical study of adhesion enhancement by composite fibrils with soft tip layers
    (Amsterdam : Elsevier, 2016) Balijepalli, Ram Gopal; Fischer, Sarah C.L.; Hensel, René; McMeeking, Robert M.; Arzt, Eduard
    Bio-inspired fibrillar surfaces with reversible adhesion to stiff substrates have been thoroughly investigated over the last decade. In this paper we propose a novel composite fibril consisting of a soft tip layer and stiffer stalk with differently shaped interfaces (flat vs. curved) between them. A tensile stress is applied remotely on the free end of the fibril whose other end adheres to a rigid substrate. The stress distributions and the resulting adhesion of such structures were numerically investigated under plane strain (2D) and axisymmetric (3D) conditions. The stress intensities were evaluated for different combinations of layer thickness and Young’s moduli. The adhesion strength values were found to increase for thinner layers and larger modulus ratio; these trends are also reflected in selected experimental results. The results of this paper provide a new strategy for optimizing adhesion strength of fibrillar surfaces.
  • Item
    Vacuum or flowing argon: What is the best synthesis atmosphere for nanodiamond-derived carbon onions for supercapacitor electrodes?
    (Amsterdam : Elsevier, 2015) Zeiger, Marco; Jäckel, Nicolas; Weingarth, Daniel; Presser, Volker
    We present a comprehensive study on the influence of the synthesis atmosphere on the structure and properties of nanodiamond-derived carbon onions. Carbon onions were synthesized at 1300 and 1700 °C in high vacuum or argon flow, using rapid dynamic heating and cooling. High vacuum annealing yielded carbon onions with nearly perfect spherical shape. An increase in surface area was caused by a decrease in particle density when transitioning from sp3 to sp2 hybridization and negligible amounts of disordered carbon were produced. In contrast, carbon onions from annealing nanodiamonds in flowing argon are highly interconnected by few-layer graphene nanoribbons. The presence of the latter improves the electrical conductivity, which is reflected by an enhanced power handling ability of supercapacitor electrodes operated in an organic electrolyte (1 M tetraethylammonium tetrafluoroborate in acetonitrile). Carbon onions synthesized in argon flow at 1700 °C show a specific capacitance of 20 F/g at 20 A/g current density and 2.7 V cell voltage which is an improvement of more than 40% compared to vacuum annealing. The same effect was measured for a synthesis temperature of 1300 °C, with a 140% higher capacitance at 20 A/g for argon flow compared to vacuum annealing.
  • Item
    Structural evolution and strain induced mixing in Cu-Co composites studied by transmission electron microscopy and atom probe tomography
    (Amsterdam : Elsevier, 2015) Bachmaier, Andrea; Aboulfadl, H.; Pfaff, Marina; Mücklich, Frank; Motz, Christian
    A Cu–Co composite material is chosen as a model system to study structural evolution and phase formations during severe plastic deformation. The evolving microstructures as a function of the applied strain were characterized at the micro-, nano-, and atomic scale-levels by combining scanning electron microscopy and transmission electron microscopy including energy-filtered transmission electron microscopy and electron energy-loss spectroscopy. The amount of intermixing between the two phases at different strains was examined at the atomic scale using atom probe tomography as complimentary method. It is shown that Co particles are dissolved in the Cu matrix during severe plastic deformation to a remarkable extent and their size, number, and volume fraction were quantitatively determined during the deformation process. From the results, it can be concluded that supersaturated solid solutions up to 26 at.% Co in a fcc Cu–26 at.% Co alloy are obtained during deformation. However, the distribution of Co was found to be inhomogeneous even at the highest degree of investigated strain.