Search Results

Now showing 1 - 2 of 2
  • Item
    Fulleretic well-defined scaffolds: Donor–fullerene alignment through metal coordination and its effect on photophysics
    (Hoboken, NJ : Wiley, 2016) Williams, Derek E.; Dolgopolova, Ekaterina A.; Godfrey, Danielle C.; Ermolaeva, Evgeniya D.; Pellechia, Perry J.; Greytak, Andrew B.; Smith, Mark D.; Avdoshenko, Stanislav M.; Popov, Alexey A.; Shustova, Natalia B.
    Herein, we report the first example of a crystalline metal–donor–fullerene framework, in which control of the donor–fullerene mutual orientation was achieved through chemical bond formation, in particular, by metal coordination. The 13C cross‐polarization magic‐angle spinning NMR spectroscopy, X‐ray diffraction, and time‐resolved fluorescence spectroscopy were performed for comprehensive structural analysis and energy‐transfer (ET) studies of the fulleretic donor–acceptor scaffold. Furthermore, in combination with photoluminescence measurements, the theoretical calculations of the spectral overlap function, Förster radius, excitation energies, and band structure were employed to elucidate the photophysical and ET processes in the prepared fulleretic material. We envision that the well‐defined fulleretic donor–acceptor materials could contribute not only to the basic science of fullerene chemistry but would also be used towards effective development of organic photovoltaics and molecular electronics.
  • Item
    Synthesis and isolation of the titanium–scandium endohedral fullerenes—Sc2TiC@Ih‐C80, Sc2TiC@D5h‐C80 and Sc2TiC2@Ih‐C80: Metal size tuning of the TiIV/TiIII redox potentials
    (Hoboken, NJ : Wiley, 2016) Junghans, Katrin; Ghiassi, Kamran B.; Samoylova, Nataliya A.; Deng, Qingming; Rosenkranz, Marco; Olmstead, Marylin M.; Balch, Alan L.; Popov, Alexey A.
    The formation of endohedral metallofullerenes (EMFs) in an electric arc is reported for the mixed‐metal Sc–Ti system utilizing methane as a reactive gas. Comparison of these results with those from the Sc/CH4 and Ti/CH4 systems as well as syntheses without methane revealed a strong mutual influence of all key components on the product distribution. Whereas a methane atmosphere alone suppresses the formation of empty cage fullerenes, the Ti/CH4 system forms mainly empty cage fullerenes. In contrast, the main fullerene products in the Sc/CH4 system are Sc4C2@C80 (the most abundant EMF from this synthesis), Sc3C2@C80, isomers of Sc2C2@C82, and the family Sc2C2 n (2 n=74, 76, 82, 86, 90, etc.), as well as Sc3CH@C80. The Sc–Ti/CH4 system produces the mixed‐metal Sc2TiC@C2 n (2 n=68, 78, 80) and Sc2TiC2@C2 n (2 n=80) clusterfullerene families. The molecular structures of the new, transition‐metal‐containing endohedral fullerenes, Sc2TiC@Ih‐C80, Sc2TiC@D5h‐C80, and Sc2TiC2@Ih‐C80, were characterized by NMR spectroscopy. The structure of Sc2TiC@Ih‐C80 was also determined by single‐crystal X‐ray diffraction, which demonstrated the presence of a short Ti=C double bond. Both Sc2TiC‐ and Sc2TiC2‐containing clusterfullerenes have Ti‐localized LUMOs. Encapsulation of the redox‐active Ti ion inside the fullerene cage enables analysis of the cluster–cage strain in the endohedral fullerenes through electrochemical measurements.