Search Results

Now showing 1 - 2 of 2
  • Item
    Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators
    (München : European Geopyhsical Union, 2017) Krause, Andreas; Pugh, Thomas A.M.; Bayer, Anita D.; Doelman, Jonathan C.; Humpenöder, Florian; Anthoni, Peter; Olin, Stefan; Bodirsky, Benjamin L.; Popp, Alexander; Stehfest, Elke; Arneth, Almut
    Land management for carbon storage is discussed as being indispensable for climate change mitigation because of its large potential to remove carbon dioxide from the atmosphere, and to avoid further emissions from deforestation. However, the acceptance and feasibility of land-based mitigation projects depends on potential side effects on other important ecosystem functions and their services. Here, we use projections of future land use and land cover for different land-based mitigation options from two land-use models (IMAGE and MAgPIE) and evaluate their effects with a global dynamic vegetation model (LPJ-GUESS). In the land-use models, carbon removal was achieved either via growth of bioenergy crops combined with carbon capture and storage, via avoided deforestation and afforestation, or via a combination of both. We compare these scenarios to a reference scenario without land-based mitigation and analyse the LPJ-GUESS simulations with the aim of assessing synergies and trade-offs across a range of ecosystem service indicators: carbon storage, surface albedo, evapotranspiration, water runoff, crop production, nitrogen loss, and emissions of biogenic volatile organic compounds. In our mitigation simulations cumulative carbon storage by year 2099 ranged between 55 and 89 GtC. Other ecosystem service indicators were influenced heterogeneously both positively and negatively, with large variability across regions and land-use scenarios. Avoided deforestation and afforestation led to an increase in evapotranspiration and enhanced emissions of biogenic volatile organic compounds, and to a decrease in albedo, runoff, and nitrogen loss. Crop production could also decrease in the afforestation scenarios as a result of reduced crop area, especially for MAgPIE land-use patterns, if assumed increases in crop yields cannot be realized. Bioenergy-based climate change mitigation was projected to affect less area globally than in the forest expansion scenarios, and resulted in less pronounced changes in most ecosystem service indicators than forest-based mitigation, but included a possible decrease in nitrogen loss, crop production, and biogenic volatile organic compounds emissions.
  • Item
    Impact of droughts on the carbon cycle in European vegetation: A probabilistic risk analysis using six vegetation models
    (München : European Geopyhsical Union, 2014) Van Oijen, M.; Balkovi, J.; Beer, C.; Cameron, D.R.; Ciais, P.; Cramer, W.; Kato, T.; Kuhnert, M.; Martin, R.; Myneni, R.; Rammig, A.; Rolinski, S.; Soussana, J.-F.; Thonicke, K.; Van der Velde, M.; Xu, L.
    We analyse how climate change may alter risks posed by droughts to carbon fluxes in European ecosystems. The approach follows a recently proposed framework for risk analysis based on probability theory. In this approach, risk is quantified as the product of hazard probability and ecosystem vulnerability. The probability of a drought hazard is calculated here from the Standardized Precipitation–Evapotranspiration Index (SPEI). Vulnerability is calculated from the response to drought simulated by process-based vegetation models. We use six different models: three for generic vegetation (JSBACH, LPJmL, ORCHIDEE) and three for specific ecosystems (Scots pine forests: BASFOR; winter wheat fields: EPIC; grasslands: PASIM). The periods 1971–2000 and 2071–2100 are compared. Climate data are based on gridded observations and on output from the regional climate model REMO using the SRES A1B scenario. The risk analysis is carried out for ~ 18 000 grid cells of 0.25 × 0.25° across Europe. For each grid cell, drought vulnerability and risk are quantified for five seasonal variables: net primary and ecosystem productivity (NPP, NEP), heterotrophic respiration (Rh), soil water content and evapotranspiration. In this analysis, climate change leads to increased drought risks for net primary productivity in the Mediterranean area: five of the models estimate that risk will exceed 15%. The risks increase mainly because of greater drought probability; ecosystem vulnerability will increase to a lesser extent. Because NPP will be affected more than Rh, future carbon sequestration (NEP) will also be at risk predominantly in southern Europe, with risks exceeding 0.25 g C m−2 d−1 according to most models, amounting to reductions in carbon sequestration of 20 to 80%.