Search Results

Now showing 1 - 4 of 4
  • Item
    Surface, interphase and tensile properties of unsized, sized and heat treated basalt fibres
    (London [u.a.] : Institute of Physics, 2016) Förster, T.; Sommer, G.S.; Mäder, E.; Scheffler, C.
    Recycling of fibre reinforced polymers is in the focus of several investigations. Chemical and thermal treatments of composites are the common ways to separate the reinforcing fibres from the polymer matrices. However, most sizings on glass and basalt fibre are not designed to resist high temperatures. Hence, a heat treatment might also lead to a sizing removal, a decrease of mechanical performance and deterioration in fibre-matrix adhesion. Different basalt fibres were investigated using surface analysis methods as well as single fibre tensile tests and single fibre pull-out tests in order to reveal the possible causes of these issues. Heat treatment in air reduced the fibre tensile strength in the same level like heat treatment in nitrogen atmosphere, but it influenced the wetting capability. Re-sizing by a coupling agent slightly increased the adhesion strength and reflected a decreased post-debonding friction.
  • Item
    Degradation Behavior of Silk Nanoparticles - Enzyme Responsiveness
    (Washington, DC : ACS Publ., 2018) Wongpinyochit, Thidarat; Johnston, Blair F.; Seib, F. Philipp
    Silk nanoparticles are viewed as promising vectors for intracellular drug delivery as they can be taken up into cells by endocytosis and trafficked to lysosomes, where lysosomal enzymes and the low pH trigger payload release. However, the subsequent degradation of the silk nanoparticles themselves still requires study. Here, we report the responsiveness of native and PEGylated silk nanoparticles to degradation following exposure to proteolytic enzymes (protease XIV and α-chymotrypsin) and papain, a cysteine protease. Both native and PEGylated silk nanoparticles showed similar degradation behavior over a 20 day exposure period (degradation rate: protease XIV > papain ≫ α-chymotrypsin). Within 1 day, the silk nanoparticles were rapidly degraded by protease XIV, resulting in a ∼50% mass loss, an increase in particle size, and a reduction in the amorphous content of the silk secondary structure. By contrast, 10 days of papain treatment was necessary to observe any significant change in nanoparticle properties, and α-chymotrypsin treatment had no effect on silk nanoparticle characteristics over the 20-day study period. Silk nanoparticles were also exposed ex vivo to mammalian lysosomal enzyme preparations to mimic the complex lysosomal microenvironment. Preliminary results indicated a 45% reduction in the silk nanoparticle size over a 5-day exposure. Overall, the results demonstrate that silk nanoparticles undergo enzymatic degradation, but the extent and kinetics are enzyme-specific.
  • Item
    Quantifying texture evolution during hot rolling of AZ31 Twin Roll Cast strip
    (London [u.a.] : Institute of Physics, 2015) Gorelova, S.; Schaeben, H.; Skrotzki, Werner; Oertel, Carl-Georg
    Multi-pass rolling experiments with an AZ31 Twin Roll Cast (TRC) alloy were performed on an industrial scaled four-high rolling mill. Within the rolling with an intermediate annealing the evolution of texture was investigated. To quantify the extent of preferred crystallographic orientation experimental X-ray pole figures were measured after different process steps and analyzed using the free and open Matlab® toolbox MTEX for texture analysis. The development of the fiber texture was observed and analyzed in dependence on rolling conditions. In the initial state the specimen exhibits a texture composed of a weak basal texture and a cast texture with {0001}-planes oriented across the rolling direction. During the following rolling process a fiber texture was developed. The expected strength increment of the fiber texture was quantitatively confirmed in terms of volume portions of the orientation density function around the fiber and in terms of the canonical parameters of fitted pseudo Bingham distributions. On the results of this work a model for prediction of the texture evolution during the strip rolling of magnesium in the examined parameter range was developed.
  • Item
    Unraveling the Impact of High-Order Silk Structures on Molecular Drug Binding and Release Behaviors
    (Washington, DC : ACS, 2019) Wongpinyochit, Thidarat; Vassileiou, Antony D.; Gupta, Sukriti; Mushrif, Samir H.; Johnston, Blair F.; Seib, F. Philipp
    Silk continues to amaze: over the past decade, new research threads have emerged that include the use of silk fibroin for advanced pharmaceutics, including its suitability for drug delivery. Despite this ongoing interest, the details of silk fibroin structures and their subsequent drug interactions at the molecular level remain elusive, primarily because of the difficulties encountered in modeling the silk fibroin molecule. Here, we generated an atomistic silk model containing amorphous and crystalline regions. We then exploited advanced well-tempered metadynamics simulations to generate molecular conformations that we subsequently exposed to classical molecular dynamics simulations to monitor both drug binding and release. Overall, this study demonstrated the importance of the silk fibroin primary sequence, electrostatic interactions, hydrogen bonding, and higher-order conformation in the processes of drug binding and release. © Copyright © 2019 American Chemical Society.