Search Results

Now showing 1 - 2 of 2
  • Item
    Grasshopper herbivory immediately affects element cycling but not export rates in an N‐limited grassland system
    (Ithaca, NY : ESA, 2021) Potthast, Karin; Meyer, Stefanie; Tischer, Alexander; Gleixner, Gerd; Sieburg, Anne; Frosch, Torsten; Michalzik, Beate
    As a cause of ecosystem disturbances, phytophagous insects are known to directly influence the element and organic matter (OM) cycling in ecosystems by their defoliation and excretion activity. This study focuses on the interplay between short-term, insect herbivory, plant responses to feeding activity, rhizosphere processes, and belowground nutrient availability under nutrient-poor soil conditions. To test the effects of insect herbivory on OM and nutrient cycling in an N-limited pasture system, mesocosm laboratory experiments were conducted using Dactylis glomerata as common grass species and Chorthippus dorsatus, a widespread grasshopper species, to induce strong defoliating herbivory. 13CO2 pulse labeling was used together with labeled 15N feces to trace the fate of C in soil respiration at the beginning of herbivory, and of C and N in above- and belowground plant biomass, grasshopper, feces, bulk soil, soil microbial biomass, throughfall solutions, and soil solutions. Within five days, herbivory caused a reduction in aboveground grass biomass by about 34%. A linear mixed-effects model revealed that herbivory significantly increased total dissolved C and N amounts in throughfall solutions by a factor of 4–10 (P < 0.05) compared with the control. In total, 27.6% of the initially applied feces 15N were translocated from the aboveground to the belowground system. A significant enrichment of 15N in roots led to the assumption that feces-derived 15N was rapidly taken up to compensate for the frass-related foliar N losses in light of N shortage. Soil microorganisms incorporated newly available 13C; however, the total amount of soil microbial biomass remained unaffected, while the exploitative grass species rapidly sequestered resources to facilitate its regrowth after herbivory attack. Heavy herbivory by insects infesting D. glomerata-dominated, N-deficient grasslands remarkably impacted belowground nutrient cycling by an instant amplification of available nutrients, which led to an intensified nutrient competition between plants and soil microorganisms. Consequently, these competitive plant–soil microbe interactions accelerated N cycling and effectively retained herbivory-mediated C and N surplus release resulting in diminished N losses from the system. The study highlighted the overarching role of plant adaptations to in situ soil fertility in short-term ecosystem disturbances.
  • Item
    Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale
    (Ithaca, NY : ESA, 2019) Bugmann, Harald; Seidl, Rupert; Hartig, Florian; Bohn, Friedrich; Bruna, Josef; Cailleret, Maxime; Francois, Louis; Heinke, Jens; Henrot, Alexandra-Jane; Hickler, Thomas; Huelsmann, Lisa; Huth, Andreas; Jacquemin, Ingrid; Kollas, Chris; Lasch-Born, Petra; Lexer, Manfred J.; Merganic, Jan; Merganicova, Katarna; Mette, Tobias; Miranda, Brian R.; Nadal-Sala, Daniel; Rammer, Werner; Rammig, Anja; Reineking, Bjoern; Roedig, Edna; Sabate, Santi; Steinkamp, Jorg; Suckow, Felicitas; Vacchiano, Giorgio; Wild, Jan; Xu, Chonggang; Reyer, Christopher P.O.
    Models are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetation models (DVMs) regarding their sensitivity to different formulations of tree mortality under different degrees of climate change. The set of models comprised eight DVMs at the stand scale, three at the landscape scale, and four typically applied at the continental to global scale. Some incorporate empirically derived mortality models, and others are based on experimental data, whereas still others are based on theoretical reasoning. Each DVM was run with at least two alternative mortality submodels. Model behavior was evaluated against empirical time series data, and then, the models were subjected to different scenarios of climate change. Most DVMs matched empirical data quite well, irrespective of the mortality submodel that was used. However, mortality submodels that performed in a very similar manner against past data often led to sharply different trajectories of forest dynamics under future climate change. Most DVMs featured high sensitivity to the mortality submodel, with deviations of basal area and stem numbers on the order of 10–40% per century under current climate and 20–170% under climate change. The sensitivity of a given DVM to scenarios of climate change, however, was typically lower by a factor of two to three. We conclude that (1) mortality is one of the most uncertain processes when it comes to assessing forest response to climate change, and (2) more data and a better process understanding of tree mortality are needed to improve the robustness of simulated future forest dynamics. Our study highlights that comparing several alternative mortality formulations in DVMs provides valuable insights into the effects of process uncertainties on simulated future forest dynamics. © 2019 The Authors.