Search Results

Now showing 1 - 5 of 5
  • Item
    Critical aspects of substrate nanopatterning for the ordered growth of GaN nanocolumns
    (London : BioMed Central, 2011) Barbagini, Francesca; Bengoechea-Encabo, Ana; Albert, Steven; Martinez, Javier; Sanchez García, Miguel Angel; Trampert, Achim; Calleja, Enrique
    Precise and reproducible surface nanopatterning is the key for a successful ordered growth of GaN nanocolumns. In this work, we point out the main technological issues related to the patterning process, mainly surface roughness and cleaning, and mask adhesion to the substrate. We found that each of these factors, process-related, has a dramatic impact on the subsequent selective growth of the columns inside the patterned holes. We compare the performance of e-beam lithography, colloidal lithography, and focused ion beam in the fabrication of hole-patterned masks for ordered columnar growth. These results are applicable to the ordered growth of nanocolumns of different materials.
  • Item
    Polarized recombination of acoustically transported carriers in GaAs nanowires
    (London : BioMed Central, 2012) Möller, Michael; Hernández-Mínguez, Alberto; Breuer, Steffen; Pfüller, Carsten; Brandt, Oliver; de Lima Jr, Mauricio M.; Cantarero, Andrés; Geelhaar, Lutz; Riechert, Henning; Santos, Paulo V.
    The oscillating piezoelectric field of a surface acoustic wave (SAW) is employed to transport photoexcited electrons and holes in GaAs nanowires deposited on a SAW delay line on a LiNbO3 crystal. The carriers generated in the nanowire by a focused light spot are acoustically transferred to a second location where they recombine. We show that the recombination of the transported carriers occurs in a zinc blende section on top of the predominant wurtzite nanowire. This allows contactless control of the linear polarized emission by SAWs which is governed by the crystal structure. Additional polarization-resolved photoluminescence measurements were performed to investigate spin conservation during transport.
  • Item
    Delayed crystallization of ultrathin Gd2O3 layers on Si(111) observed by in situ X-ray diffraction
    (London : BioMed Central, 2012) Hanke, Michael; Kaganer, Vladimir M.; Bierwagen, Oliver; Niehle, Michael; Trampert, Achim
    We studied the early stages of Gd2O3 epitaxy on Si(111) in real time by synchrotron-based, high-resolution X-ray diffraction and by reflection high-energy electron diffraction. A comparison between model calculations and the measured X-ray scattering, and the change of reflection high-energy electron diffraction patterns both indicate that the growth begins without forming a three-dimensional crystalline film. The cubic bixbyite structure of Gd2O3 appears only after a few monolayers of deposition.
  • Item
    Lattice parameter accommodation between GaAs(111) nanowires and Si(111) substrate after growth via Au-assisted molecular beam epitaxy
    (London : BioMed Central, 2012) Davydok, Anton; Breuer, Steffen; Biermanns, Andreas; Geelhaar, Lutz; Pietsch, Ullrich
    Using out-of-plane and in-plane X-ray diffraction techniques, we have investigated the structure at the interface between GaAs nanowires [NWs] grown by Au-assisted molecular beam epitaxy and the underlying Si(111) substrate. Comparing the diffraction pattern measured at samples grown for 5, 60, and 1,800 s, we find a plastic strain release of about 75% close to the NW-to-substrate interface even at the initial state of growth, probably caused by the formation of a dislocation network at the Si-to-GaAs interface. In detail, we deduce that during the initial stage, zinc-blende structure GaAs islands grow with a gradually increasing lattice parameter over a transition region of several 10 nm in the growth direction. In contrast, accommodation of the in-plane lattice parameter takes place within a thickness of about 10 nm. As a consequence, the ratio between out-of-plane and in-plane lattice parameters is smaller than the unity in the initial state of growth. Finally the wurtzite-type NWs grow on top of the islands and are free of strain.
  • Item
    Scanning X-ray nanodiffraction: From the experimental approach towards spatially resolved scattering simulations
    (London : BioMed Central, 2012) Dubslaff, Martin; Hanke, Michael; Patommel, Jens; Hoppe, Robert; Schroer, Christian G.; Schöder, Sebastian; Burghammer, Manfred
    An enhancement on the method of X-ray diffraction simulations for applications using nanofocused hard X-ray beams is presented. We combine finite element method, kinematical scattering calculations, and a spot profile of the X-ray beam to simulate the diffraction of definite parts of semiconductor nanostructures. The spot profile could be acquired experimentally by X-ray ptychography. Simulation results are discussed and compared with corresponding X-ray nanodiffraction experiments on single SiGe dots and dot molecules.