Search Results

Now showing 1 - 10 of 14
  • Item
    Ultrashort optical pulse propagation in terms of analytic signal
    (New York, NY : Hindawi, 2011) Amiranashvili, Sh.; Demircan, A.
    We demonstrate that ultrashort optical pulses propagating in a nonlinear dispersive medium are naturally described through incorporation of analytic signal for the electric field. To this end a second-order nonlinear wave equation is first simplified using a unidirectional approximation. Then the analytic signal is introduced, and all nonresonant nonlinear terms are eliminated. The derived propagation equation accounts for arbitrary dispersion, resonant four-wave mixing processes, weak absorption, and arbitrary pulse duration. The model applies to the complex electric field and is independent of the slowly varying envelope approximation. Still the derived propagation equation posses universal structure of the generalized nonlinear Schrdinger equation (NSE). In particular, it can be solved numerically with only small changes of the standard split-step solver or more complicated spectral algorithms for NSE. We present exemplary numerical solutions describing supercontinuum generation with an ultrashort optical pulse.
  • Item
    Designing Hierarchical ZSM-5 Materials for Improved Production of LPG Olefins in the Catalytic Cracking of Triglycerides
    (New York, NY : Hindawi, 2019) Vu, Xuan Hoan; Armbruster, Udo
    LPG olefins (propene and butenes) are key building blocks in the petrochemical industry whose demand has been expanding steadily in recent years. The use of FCC (fluid catalytic cracking) units for conversion of triglycerides is a promising option for the future to boost production of LPG olefins. However, a need for innovative cracking catalysts is rising due to the different nature between petroleum and biomass-derived feedstocks. In this study, series of hierarchical ZSM-5 materials, namely, mesoporous ZSM-5, nanosized ZSM-5, and composite ZSM-5 were prepared, aiming to enhance the production of LPG olefins along with transportation fuels. Mesoporous ZSM-5 materials were synthesized by the postsynthetic modifications involving base treatment and subsequent acid washing, whereas nanosized ZSM-5 and composite ZSM-5 were synthesized by the direct-synthetic routes for a comparative purpose. The obtained materials were characterized by XRD, FTIR, N2 sorption, TEM, AAS, ICP-AES, and NH3-TPD, and their catalytic performance was assessed in the cracking of triolein as a representative of triglycerides under FCC conditions. It was found that the subsequent strong acid washing step of alkaline treated ZSM-5 for removal of aluminum debris and external acid sites is needed to improve the catalytic performance. The resulting mesoporous ZSM-5 material shows higher yields of the desired products, i.e., gasoline and LPG olefins than its parent, commercial ZSM-5 at the almost complete conversion (ca. 90 wt.%). The selectivity toward LPG olefins is also enhanced over all the hierarchical ZSM-5 materials, particularly high for composite ZSM-5 (ca. 94 wt.%). The improved diffusion and lowered acidity of the hierarchical ZSM-5 materials might be responsible for their superior catalytic performance. © 2019 Xuan Hoan Vu and Udo Armbruster.
  • Item
    Canonical sets of best L1-approximation
    (New York, NY : Hindawi, 2012) Dryanov, D.; Petrov, P.
    In mathematics, the term approximation usually means either interpolation on a point set or approximation with respect to a given distance. There is a concept, which joins the two approaches together, and this is the concept of characterization of the best approximants via interpolation. It turns out that for some large classes of functions the best approximants with respect to a certain distance can be constructed by interpolation on a point set that does not depend on the choice of the function to be approximated. Such point sets are called canonical sets of best approximation. The present paper summarizes results on canonical sets of best L1-approximation with emphasis on multivariate interpolation and best L1-approximation by blending functions. The best L1-approximants are characterized as transfinite interpolants on canonical sets. The notion of a Haar-Chebyshev system in the multivariate case is discussed also. In this context, it is shown that some multivariate interpolation spaces share properties of univariate Haar-Chebyshev systems. We study also the problem of best one-sided multivariate L 1-approximation by sums of univariate functions. Explicit constructions of best one-sided L1-approximants give rise to well-known and new inequalities.
  • Item
    Fiber optic sensors
    (New York, NY : Hindawi, 2012) Ecke, W.; Chen, K.; Leng, J.
    [No abstract available]
  • Item
    Remote system for detection of low-levels of methane based on photonic crystal fibres and wavelength modulation spectroscopy
    (New York, NY : Hindawi, 2009) Carvalho, J.P.; Lehmann, H.; Bartelt, H.; Magalhes, F.; Amezcua-Correa, R.; Santos, J.L.; Roosbroeck, J.V.; Arajo, F.M.; Ferreira, L.A.; Knight, J.C.
    In this work we described an optical fibre sensing system for detecting low levels of methane. The properties of hollow-core photonic crystal fibres are explored to have a sensing head with favourable characteristics for gas sensing, particularly in what concerns intrinsic readout sensitivity and gas diffusion time in the sensing structure. The sensor interrogation was performed applying the Wavelength Modulation Spectroscopy technique, and a portable measurement unit was developed with performance suitable for remote detection of low levels of methane. This portable system has the capacity to simultaneously interrogate four remote photonic crystal fibre sensing heads. Copyright © 2009 J. P. Carvalho et al.
  • Item
    Modelling the Dependency between Inflation and Exchange Rate Using Copula
    (New York, NY : Hindawi, 2020) Kwofie, Charles; Akoto, Isaac; Opoku-Ameyaw, Kwaku
    In this paper, we propose a copula approach in measuring the dependency between inflation and exchange rate. In unveiling this dependency, we first estimated the best GARCH model for the two variables. Then, we derived the marginal distributions of the standardised residuals from the GARCH. The Laplace and generalised t distributions best modelled the residuals of the GARCH(1,1) models, respectively, for inflation and exchange rate. These marginals were then used to transform the standardised residuals into uniform random variables on a unit interval [0, 1] for estimating the copulas. Our results show that the dependency between inflation and exchange rate in Ghana is approximately 7%.
  • Item
    Modeling of GPR Clutter Caused by Soil Heterogeneity
    (New York, NY : Hindawi, 2012) Takahashi, Kazunori; Igel, Jan; Preetz, Holger
    In small-scale measurements, ground-penetrating radar (GPR) often uses a higher frequency to detect a small object or structural changes in the ground. GPR becomes more sensitive to the natural heterogeneity of the soil when a higher frequency is used. Soil heterogeneity scatters electromagnetic waves, and the scattered waves are in part observed as unwanted reflections that are often referred to as clutter. Data containing a great amount of clutter are difficult to analyze and interpret because clutter disturbs reflections from objects of interest. Therefore, modeling GPR clutter is useful to assess the effectiveness of GPR measurements. In this paper, the development of such a technique is discussed. This modeling technique requires the permittivity distribution of soil (or its geostatistical properties) and gives a nominal value of clutter power. The paper demonstrates the technique with the comparison to the data from a GPR time-lapse measurement. The proposed technique is discussed in regard to its applicability and limitations based on the results.
  • Item
    Utilization of agrowaste polymers in PVC/NBR alloys: Tensile, thermal, and morphological properties
    (New York, NY : Hindawi, 2012) Mousa, A.; Heinrich, G.; Kretzschmar, B.; Wagenknecht, U.; Das, A.
    Poly(vinyl chloride)/nitrile butadiene rubber (PVC/NBR) alloys were melt-mixed using a Brabender Plasticorder at 180 °C and 50rpm rotor speed. Alloys obtained by melt mixing from PVC and NBR were formulated with wood-flour- (WF-) based olive residue, a natural byproduct from olive oil extraction industry. WF was progressively increased from 0 to 30phr. The effects of WF loadings on the tensile properties of the fabricated samples were inspected. The torque rheometry, which is an indirect indication of the melt strength, is reported. The pattern of water uptake for the composites was checked as a function WF loading. The fracture mode and the quality of bonding of the alloy with and without filler are studied using electron scanning microscope (SEM).
  • Item
    Zero-Offset VSP Monitoring of CO2Storage: Impedance Inversion and Wedge Modelling at the Ketzin Pilot Site
    (New York, NY : Hindawi, 2014) Götz, Julia; Lüth, Stefan; Krawczyk, Charlotte M.; Cosma, Calin
    At the CO2 storage pilot site near the town of Ketzin (35 km west of Berlin, Germany) the sandstone reservoir at 630 m–650 m depth is thin and heterogeneous. The time-lapse analysis of zero-offset VSP measurements shows that CO2-induced amplitude changes can be observed on near-well corridor stacks. Further, we investigate whether CO2-induced amplitude changes in the monitoring data can be used to derive geometrical and petrophysical parameters governing the migration of CO2 within a brine saturated sandstone aquifer. 2D seismic-elastic modelling is done to test the processing workflow and to perform a wedge modelling study for estimation of the vertical expansion of the CO2 plume. When using the NRMS error as a measure for the similarity between the modelled and recorded repeat traces, the best match is achieved for a plume thickness of 6-7 m within the reservoir sandstone of 8 m thickness. With band limited impedance inversion a velocity reduction at the top of the reservoir of 30%, influenced by casing reverberations as well as CO2 injection, is found. The relation of seismic amplitude to CO2 saturated layer thickness and CO2-induced changes in P-wave velocities are important parameters for the quantification of the injected CO2 volume.
  • Item
    Mathematical fundamentals of modern linear optics
    (New York, NY : Hindawi, 2012) Gitin, A.V.
    All known quantum-mechanical approaches to wave and statistical optics are united into a single theory, using Feynman's path integral as a fundamental principle. In short-wave approximations, this principle, the Fourier transformations, and concepts of the theory reproduce Fermat's principle, the Legendre transformations, and concepts of Hamilton's optics and radiometry in a one-to-one fashion.