Search Results

Now showing 1 - 5 of 5
  • Item
    Highly Conductive, Stretchable, and Cell-Adhesive Hydrogel by Nanoclay Doping
    (Weinheim : Wiley-VCH, 2019) Tondera, Christoph; Akbar, Teuku Fawzul; Thomas, Alvin Kuriakose; Lin, Weilin; Werner, Carsten; Busskamp, Volker; Zhang, Yixin; Minev, Ivan R.
    Electrically conductive materials that mimic physical and biological properties of tissues are urgently required for seamless brain-machine interfaces. Here, a multinetwork hydrogel combining electrical conductivity of 26 S m-1 , stretchability of 800%, and tissue-like elastic modulus of 15 kPa with mimicry of the extracellular matrix is reported. Engineering this unique set of properties is enabled by a novel in-scaffold polymerization approach. Colloidal hydrogels of the nanoclay Laponite are employed as supports for the assembly of secondary polymer networks. Laponite dramatically increases the conductivity of in-scaffold polymerized poly(ethylene-3,4-diethoxy thiophene) in the absence of other dopants, while preserving excellent stretchability. The scaffold is coated with a layer containing adhesive peptide and polysaccharide dextran sulfate supporting the attachment, proliferation, and neuronal differentiation of human induced pluripotent stem cells directly on the surface of conductive hydrogels. Due to its compatibility with simple extrusion printing, this material promises to enable tissue-mimetic neurostimulating electrodes.
  • Item
    Bidirectional and Stretchable Piezoresistive Sensors Enabled by Multimaterial 3D Printing of Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites
    (Basel : MDPI, 2018-12-21) Christ, Josef F.; Aliheidari, Nahal; Pötschke, Petra; Ameli, Amir
    Fabricating complex sensor platforms is still a challenge because conventional sensors are discrete, directional, and often not integrated within the system at the material level. Here, we report a facile method to fabricate bidirectional strain sensors through the integration of multiwalled carbon nanotubes (MWCNT) and multimaterial additive manufacturing. Thermoplastic polyurethane (TPU)/MWCNT filaments were first made using a two-step extrusion process. TPU as the platform and TPU/MWCNT as the conducting traces were then 3D printed in tandem using multimaterial fused filament fabrication to generate uniaxial and biaxial sensors with several conductive pattern designs. The sensors were subjected to a series of cyclic strain loads. The results revealed excellent piezoresistive responses with cyclic repeatability in both the axial and transverse directions and in response to strains as high as 50%. It was shown that the directional sensitivity could be tailored by the type of pattern design. A wearable glove, with built-in sensors, capable of measuring finger flexure was also successfully demonstrated where the sensors are an integral part of the system. These sensors have potential applications in wearable electronics, soft robotics, and prosthetics, where complex design, multi-directionality, embedding, and customizability are demanded.
  • Item
    Fabrication of Microfluidic Devices for Emulsion Formation by Microstereolithography
    (Basel : MDPI, 2021) Männel, Max J.; Baysak, Elif; Thiele, Julian
    Droplet microfluidics—the art and science of forming droplets—has been revolutionary for high-throughput screening, directed evolution, single-cell sequencing, and material design. However, traditional fabrication techniques for microfluidic devices suffer from several disadvantages, including multistep processing, expensive facilities, and limited three-dimensional (3D) design flexibility. High-resolution additive manufacturing—and in particular, projection micro-stereolithography (PµSL)—provides a promising path for overcoming these drawbacks. Similar to polydimethylsiloxane-based microfluidics 20 years ago, 3D printing methods, such as PµSL, have provided a path toward a new era of microfluidic device design. PµSL greatly simplifies the device fabrication process, especially the access to truly 3D geometries, is cost-effective, and it enables multimaterial processing. In this review, we discuss both the basics and recent innovations in PµSL; the material basis with emphasis on custom-made photopolymer formulations; multimaterial 3D printing; and, 3D-printed microfluidic devices for emulsion formation as our focus application. Our goal is to support researchers in setting up their own PµSL system to fabricate tailor-made microfluidics.
  • Item
    A non-cytotoxic resin for micro-stereolithography for cell cultures of HUVECs
    (Basel : MDPI, 2020) Männel, Max J.; Fischer, Carolin; Thiele, Julian
    Three-dimensional (3D) printing of microfluidic devices continuously replaces conventional fabrication methods. A versatile tool for achieving microscopic feature sizes and short process times is micro-stereolithography (µSL). However, common resins for µSL lack biocompatibility and are cytotoxic. This work focuses on developing new photo-curable resins as a basis for µSL fabrication of polymer materials and surfaces for cell culture. Different acrylate-and methacrylate-based compositions are screened for material characteristics including wettability, surface roughness, and swelling behavior. For further understanding, the impact of photo-absorber and photo-initiator on the cytotoxicity of 3D-printed substrates is studied. Cell culture experiments with human umbilical vein endothelial cells (HUVECs) in standard polystyrene vessels are compared to 3D-printed parts made from our library of homemade resins. Among these, after optimizing material composition and post-processing, we identify selected mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) methyl ethyl methacrylate (PEGMEMA) as most suitable to allow for fabricating cell culture platforms that retain both the viability and proliferation of HUVECs. Next, our PEGDA/PEGMEMA resins will be further optimized regarding minimal feature size and cell adhesion to fabricate microscopic (microfluidic) cell culture platforms, e.g., for studying vascularization of HUVECs in vitro. © 2020 by the authors.
  • Item
    Flexible Materials for High-Resolution 3D Printing of Microfluidic Devices with Integrated Droplet Size Regulation
    (Washington, DC : ACS Publications, 2021) Weigel, Niclas; Männel, Max J.; Thiele, Julian
    We develop resins for high-resolution additive manufacturing of flexible micromaterials via projection microstereolithography (PμSL) screening formulations made from monomer 2-phenoxyethyl acrylate, the cross-linkers Ebecryl 8413, tri(propyleneglycol) diacrylate or 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, the photoabsorber Sudan 1, and the photoinitiator diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide. PμSL-printed polymer micromaterials made from this resin library are characterized regarding achievable layer thickness depending on UV exposure energy, and for mechanical as well as optical properties. The best-candidate resin from this screening approach allows for 3D-printing transparent microchannels with a minimum cross section of approximately 35 × 46 μm2, which exhibit proper solvent resistance against water, isopropanol, ethanol, n-hexane, and HFE-7500. The mechanical properties are predestined for 3D-printing microfluidic devices with integrated functional units that require high material flexibility. Exemplarily, we design flexible microchannels for on-demand regulation of microdroplet sizes in microemulsion formation. Our two outlines of integrated droplet regulators operate by injecting defined volumes of air, which deform the droplet-forming microchannel cross-junction, and change the droplet size therein. With this study, we expand the library of functional resins for PμSL printing toward flexible materials with micrometer resolution and provide the basis for further exploration of these materials, e.g., as microstructured cell-culturing substrates with defined mechanics. © 2021 American Chemical Society. All rights reserved.