Search Results

Now showing 1 - 2 of 2
  • Item
    Effect of prestrain on the actuation characteristics of dielectric elastomers
    (Basel : MDPI, 2020) Kumar, Mayank; Sharma, Anutsek; Hait, Sakrit; Wießner, Sven; Heinrich, Gert; Arief, Injamamul; Naskar, Kinsuk; Stöckelhuber, Klaus Werner; Das, Amit
    Dielectric elastomers (DEs) represent a class of electroactive polymers that deform due to electrostatic attraction between oppositely charged electrodes under a varying electric field. Over the last couple of decades, DEs have garnered considerable attention due to their much-coveted actuation properties. As far as the precise measurement systems are concerned, however, there is no standard instrument or interface to quantify various related parameters, e.g., actuation stress, strain, voltage and creeping etc. In this communication, we present an in-depth study of dielectric actuation behavior of dielectric rubbers by the state-of-the-art “Dresden Smart Rubber Analyzer” (DSRA), designed and developed in-house. The instrument allowed us to elucidate various factors that could influence the output efficiency of the DEs. Herein, several non-conventional DEs such as hydrogenated nitrile rubber, nitrile rubber with different acrylonitrile contents, were employed as an electro-active matrix. The effect of viscoelastic creeping on the prestrain, molecular architecture of the matrices, e.g., nitrile content of nitrile-butadiene rubber (NBR) etc., are also discussed in detail.
  • Item
    Diffusive Motion of Linear Microgel Assemblies in Solution
    (Basel : MDPI, 2016) Schürings, Marco-Philipp; Nevskyi, Oleksii; Eliasch, Kamill; Michel, Ann-Katrin; Liu, Bing; Pich, Andrij; Böker, Alexander; Von Plessen, Gero; Wöll, Dominik
    Due to the ability of microgels to rapidly contract and expand in response to external stimuli, assemblies of interconnected microgels are promising for actuation applications, e.g., as contracting fibers for artificial muscles. Among the properties determining the suitability of microgel assemblies for actuation are mechanical parameters such as bending stiffness and mobility. Here, we study the properties of linear, one-dimensional chains of poly(N-vinylcaprolactam) microgels dispersed in water. They were fabricated by utilizing wrinkled surfaces as templates and UV-cross-linking the microgels. We image the shapes of the chains on surfaces and in solution using atomic force microscopy (AFM) and fluorescence microscopy, respectively. In solution, the chains are observed to execute translational and rotational diffusive motions. Evaluation of the motions yields translational and rotational diffusion coefficients and, from the translational diffusion coefficient, the chain mobility. The microgel chains show no perceptible bending, which yields a lower limit on their bending stiffness