Search Results

Now showing 1 - 3 of 3
  • Item
    Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2
    (Melville, NY : AIP Publ., 2023) Tschirner, Teresa; Keßler, Philipp; Gonzalez Betancourt, Ruben Dario; Kotte, Tommy; Kriegner, Dominik; Büchner, Bernd; Dufouleur, Joseph; Kamp, Martin; Jovic, Vedran; Smejkal, Libor; Sinova, Jairo; Claessen, Ralph; Jungwirth, Tomas; Moser, Simon; Reichlova, Helena; Veyrat, Louis
    Observations of the anomalous Hall effect in RuO2 and MnTe have demonstrated unconventional time-reversal symmetry breaking in the electronic structure of a recently identified new class of compensated collinear magnets, dubbed altermagnets. While in MnTe, the unconventional anomalous Hall signal accompanied by a vanishing magnetization is observable at remanence, the anomalous Hall effect in RuO2 is excluded by symmetry for the Néel vector pointing along the zero-field [001] easy-axis. Guided by a symmetry analysis and ab initio calculations, a field-induced reorientation of the Néel vector from the easy-axis toward the [110] hard-axis was used to demonstrate the anomalous Hall signal in this altermagnet. We confirm the existence of an anomalous Hall effect in our RuO2 thin-film samples, whose set of magnetic and magneto-transport characteristics is consistent with the earlier report. By performing our measurements at extreme magnetic fields up to 68 T, we reach saturation of the anomalous Hall signal at a field Hc ≃ 55 T that was inaccessible in earlier studies but is consistent with the expected Néel-vector reorientation field.
  • Item
    From Colossal to Zero: Controlling the Anomalous Hall Effect in Magnetic Heusler Compounds via Berry Curvature Design
    (College Park, MD : American Physical Society, 2018) Manna, K.; Muechler, L.; Kao, T.-H.; Stinshoff, R.; Zhang, Y.; Gooth, J.; Kumar, N.; Kreiner, G.; Koepernik, K.; Car, R.; Kübler, J.; Fecher, G.H.; Shekhar, C.; Sun, Y.; Felser, C.
    Since the discovery of the anomalous Hall effect (AHE), the anomalous Hall conductivity (AHC) has been thought to be zero when there is no net magnetization. However, the recently found relation between the intrinsic AHE and the Berry curvature predicts other possibilities, such as a large AHC in noncolinear antiferromagnets with no net magnetization but net Berry curvature. Vice versa, the AHE in principle could be tuned to zero, irrespective of a finite magnetization. Here, we experimentally investigate this possibility and demonstrate that the symmetry elements of Heusler magnets can be changed such that the Berry curvature and all the associated properties are switched while leaving the magnetization unaffected. This enables us to tune the AHC from 0 Ω-1 cm-1 up to 1600 Ω-1 cm-1 with an exceptionally high anomalous Hall angle up to 12%, while keeping the magnetization the same. Our study shows that the AHC can be controlled by selectively changing the Berry curvature distribution, independent of the magnetization.
  • Item
    Topological Electronic Structure and Intrinsic Magnetization in MnBi4Te7: A Bi2Te3 Derivative with a Periodic Mn Sublattice
    (College Park, MD : American Physical Society, 2019) Vidal, R.C.; Zeugner, A.; Facio, J.I.; Ray, R.; Haghighi, M.H.; Wolter, A.U.B.; Corredor, Bohorquez, L.T.; Caglieris, F.; Moser, S.; Figgemeier, T.; Peixoto, T.R.F.; Vasili, H.B.; Valvidares, M.; Jung, S.; Cacho, C.; Alfonsov, A.; Mehlawat, K.; Kataev, V.; Hess, C.; Richter, M.; Büchner, B.; Van Den Brink, J.; Ruck, M.; Reinert, F.; Bentmann, H.; Isaeva, A.
    Combinations of nontrivial band topology and long-range magnetic order hold promise for realizations of novel spintronic phenomena, such as the quantum anomalous Hall effect and the topological magnetoelectric effect. Following theoretical advances, material candidates are emerging. Yet, so far a compound that combines a band-inverted electronic structure with an intrinsic net magnetization remains unrealized. MnBi2Te4 has been established as the first antiferromagnetic topological insulator and constitutes the progenitor of a modular (Bi2Te3)n(MnBi2Te4) series. Here, for n=1, we confirm a nonstoichiometric composition proximate to MnBi4Te7. We establish an antiferromagnetic state below 13 K followed by a state with a net magnetization and ferromagnetic-like hysteresis below 5 K. Angle-resolved photoemission experiments and density-functional calculations reveal a topologically nontrivial surface state on the MnBi4Te7(0001) surface, analogous to the nonmagnetic parent compound Bi2Te3. Our results establish MnBi4Te7 as the first band-inverted compound with intrinsic net magnetization providing a versatile platform for the realization of magnetic topological states of matter.