Search Results

Now showing 1 - 4 of 4
  • Item
    Vertical profiles of dust and other aerosol types above a coastal site
    (Les Ulis : EDP Sciences, 2019) Althausen, Dietrich; Mewes, Silke; Heese, Birgit; Hofer, Julian; Schechner, Yoav; Aides, Amit; Holodovsky, Vadim
    Monthly mean vertical profiles of aerosol type occurrences are determined from multiwavelength Raman and polarization lidar measurements above Haifa, Israel, in 2017. This contribution presents the applied methods and threshold values. The results are discussed for one example, May 2017. This month shows more often large, non-spherical particles in lofted layers than within the planetary boundary layer. Small particles are observed at higher altitudes only when they are observed in lower altitudes, too. © 2019 The Authors, published by EDP Sciences.
  • Item
    Improving the electrical and structural stability of highly piezoresistive nickel–carbon sensor thin films
    (Göttingen : Copernicus Publ., 2022) Schultes, Günter; Cerino, Mario; Lellig, Angela; Koch, Marcus
    The family of sputter deposited granular metal-based carbon-containing sensor films is known for their high sensitivity transforming force-dependent strain into electrical resistance change. Among them nickel–carbon thin films possess a gauge factor of up to 30, compared to only 2 for traditional sensor films of metal alloys. This high sensitivity is based on disordered interparticle tunneling through barriers of graphite-like carbon walls between metal–carbon particles of columnar shape. Force and pressure sensors would benefit a lot from the elevated piezoresistivity. A disadvantage, however, is a disturbing temporal creep and drift of the resistance under load and temperature. This contribution shows how to stabilize such sensor films. A significant stabilization is achieved by partially replacing nickel with chromium, albeit at the expense of sensitivity. The more chromium used in these NixCr1−x-C layers, the higher the optimum annealing temperature can be selected and the better the electrical stabilization. A good compromise while maintaining sensitivities well above the standard of 2 is identified for films with x=0.5 to 0.9, stabilized by optimized temperature treatments. The stabilizing effect of chromium is revealed by transmission electron microscopy with elemental analysis. The post-annealing drives segregation processes in the layer material. While the interior of the layer is depleted of chromium and carbon, boundary layers are formed. Chromium is enriched near the surface boundary, oxidized in air and forms chromium-rich oxide sub-layers, which are chemically very stable and protect against further reactions and corrosion. As a result, creep and drift errors are greatly reduced, so that the optimized sensor coatings are now suitable for widespread use.
  • Item
    Unravelling New Processes at Interfaces: Photochemical Isoprene Production at the Sea Surface
    (Columbus, Ohio : American Chemical Society, 2015) Ciuraru, Raluca; Fine, Ludovic; van Pinxteren, Manuela; D’Anna, Barbara; Herrmann, Hartmut; George, Christian
    Isoprene is an important reactive gas that is produced mainly in terrestrial ecosystems but is also produced in marine ecosystems. In the marine environment, isoprene is produced in the seawater by various biological processes. Here, we show that photosensitized reactions involving the sea-surface microlayer lead to the production of significant amounts of isoprene. It is suggested that H-abstraction processes are initiated by photochemically excited dissolved organic matter which will the degrade fatty acids acting as surfactants. This chemical interfacial processing may represent a significant abiotic source of isoprene in the marine boundary layer.
  • Item
    Infrequent new particle formation over the remote boreal forest of Siberia
    (Amsterdam [u.a.] : Elsevier Science, 2018) Wiedensohler, A.; Ma, N.; Birmili, W.; Heintzenberg, J.; Ditas, F.; Andreae, M.O.; Panov, A.
    Aerosol particle number size distributions (PNSD) were investigated to verify, if extremely low-volatility organic vapors (ELVOC) from natural sources alone could induce new particle formation and growth events over the remote boreal forest region of Siberia, hundreds of kilometers away from significant anthropogenic sources. We re-evaluated observations determined at a height of 300 m of the remote observatory ZOTTO (Zotino Tall Tower Observatory, http://www.zottoproject.org). We found that new particle formation events occurred only on 11 days in a 3-year period, suggesting that homogeneous nucleation with a subsequent condensational growth could not be the major process, maintaining the particle number concentration in the planetary boundary layer of the remote boreal forest area of Siberia. © 2018 Elsevier Ltd