Search Results

Now showing 1 - 2 of 2
  • Item
    Extended high-harmonic spectra through a cascade resonance in confined quantum systems
    (College Park, MD : APS, 2022) Zhang, Xiao; Zhu, Tao; Du, Hongchuan; Luo, Hong-Gang; van den Brink, Jeroen; Ray, Rajyavardhan
    The study of high-harmonic generation in confined quantum systems is vital to establishing a complete physical picture of harmonic generation from atoms and molecules to bulk solids. Based on a multilevel approach, we demonstrate how intraband resonances significantly influence the harmonic spectra via charge pumping to the higher subbands and thus redefine the cutoff laws. As a proof of principle, we consider the interaction of graphene nanoribbons, with zigzag as well as armchair terminations, and resonant fields polarized along the cross-ribbon direction. Here, this effect is particularly prominent due to many nearly equiseparated energy levels. In such a scenario, a cascade resonance effect can take place in high-harmonic generation when the field strength is above a critical threshold, which is completely different from the harmonic generation mechanism of atoms, molecules, and bulk solids. We further discuss the implications not only for other systems in a nanoribbon geometry, but also systems where only a few subbands (energy levels) meet this frequency-matching condition by considering a generalized multilevel Hamiltonian. Our study highlights that cascade resonance has a fundamentally distinct influence on the laws of harmonic generation, specifically the cutoff laws based on laser duration, field strength, and wavelength, thus unraveling additional insights in solid-state high-harmonic generation.
  • Item
    Intermetallic nickel silicide nanocatalyst—A non-noble metal–based general hydrogenation catalyst
    (Washington, DC [u.a.] : Assoc., 2018) Ryabchuk, Pavel; Agostini, Giovanni; Pohl, Marga-Martina; Lund, Henrik; Agapova, Anastasiya; Junge, Henrik; Junge, Kathrin; Beller, Matthias
    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO2 as the silicon atom source. The process involves thermal reduction of Si–O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon–carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal–based catalysts.