Search Results

Now showing 1 - 2 of 2
  • Item
    Comparison of two model calibration approaches and their influence on future projections under climate change in the Upper Indus Basin
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Ismail, Muhammad Fraz; Naz, Bibi S.; Wortmann, Michel; Disse, Markus; Bowling, Laura C.; Bogacki, Wolfgang
    This study performs a comparison of two model calibration/validation approaches and their influence on future hydrological projections under climate change by employing two climate scenarios (RCP2.6 and 8.5) projected by four global climate models. Two hydrological models (HMs), snowmelt runoff model + glaciers and variable infiltration capacity model coupled with a glacier model, were used to simulate streamflow in the highly snow and glacier melt–driven Upper Indus Basin. In the first (conventional) calibration approach, the models were calibrated only at the basin outlet, while in the second (enhanced) approach intermediate gauges, different climate conditions and glacier mass balance were considered. Using the conventional and enhanced calibration approaches, the monthly Nash-Sutcliffe Efficiency (NSE) for both HMs ranged from 0.71 to 0.93 and 0.79 to 0.90 in the calibration, while 0.57–0.92 and 0.54–0.83 in the validation periods, respectively. For the future impact assessment, comparison of differences based on the two calibration/validation methods at the annual scale (i.e. 2011–2099) shows small to moderate differences of up to 10%, whereas differences at the monthly scale reached up to 19% in the cold months (i.e. October–March) for the far future period. Comparison of sources of uncertainty using analysis of variance showed that the contribution of HM parameter uncertainty to the overall uncertainty is becoming very small by the end of the century using the enhanced approach. This indicates that enhanced approach could potentially help to reduce uncertainties in the hydrological projections when compared to the conventional calibration approach. © 2020, The Author(s).
  • Item
    Disentangling diverse responses to climate change among global marine ecosystem models
    (Amsterdam [u.a.] : Elsevier Science, 2021) Heneghan, Ryan F.; Galbraith, Eric; Blanchard, Julia L.; Harrison, Cheryl; Barrier, Nicolas; Bulman, Catherine; Cheung, William; Coll, Marta; Eddy, Tyler D.; Erauskin-Extramiana, Maite; Everett, Jason D.; Fernandes-Salvador, Jose A.; Gascuel, Didier; Guiet, Jerome; Maury, Olivier; Palacios-Abrantes, Juliano; Petrik, Colleen M.; du Pontavice, Hubert; Richardson, Anthony J.; Steenbeek, Jeroen; Tai, Travis C.; Volkholz, Jan; Woodworth-Jefcoats, Phoebe A.; Tittensor, Derek P.
    Climate change is warming the ocean and impacting lower trophic level (LTL) organisms. Marine ecosystem models can provide estimates of how these changes will propagate to larger animals and impact societal services such as fisheries, but at present these estimates vary widely. A better understanding of what drives this inter-model variation will improve our ability to project fisheries and other ecosystem services into the future, while also helping to identify uncertainties in process understanding. Here, we explore the mechanisms that underlie the diversity of responses to changes in temperature and LTLs in eight global marine ecosystem models from the Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP). Temperature and LTL impacts on total consumer biomass and ecosystem structure (defined as the relative change of small and large organism biomass) were isolated using a comparative experimental protocol. Total model biomass varied between −35% to +3% in response to warming, and -17% to +15% in response to LTL changes. There was little consensus about the spatial redistribution of biomass or changes in the balance between small and large organisms (ecosystem structure) in response to warming, an LTL impacts on total consumer biomass varied depending on the choice of LTL forcing terms. Overall, climate change impacts on consumer biomass and ecosystem structure are well approximated by the sum of temperature and LTL impacts, indicating an absence of nonlinear interaction between the models’ drivers. Our results highlight a lack of theoretical clarity about how to represent fundamental ecological mechanisms, most importantly how temperature impacts scale from individual to ecosystem level, and the need to better understand the two-way coupling between LTL organisms and consumers. We finish by identifying future research needs to strengthen global marine ecosystem modelling and improve projections of climate change impacts.