Search Results

Now showing 1 - 3 of 3
  • Item
    Evaluation of water balance components in the Elbe river catchment simulated by the regional climate model CCLM
    (Stuttgart : Gebrueder Borntraeger Verlagsbuchhandlung, 2014) Volkholz, J.; Grossman-Clarke, S.; Hattermann, F.F.; Böhm, U.
    For investigations of feedbacks between the hydrological cycle and the climate system, we assess the performance of the regional climate model CCLM in reconstructing the water balance of the Elbe river catchment. To this end long-term mean precipitation, evapotranspiration and runoff are evaluated. Extremes (90th percentile) are also considered in the case of precipitation. The data are provided by a CCLM presentday simulation for Europe that was driven by large-scale global reanalyses. The quality of the model results is analyzed with respect to suitable reference data for the period 1970 to 1999. The principal components of the hydrological cycle and their seasonal variations were captured well. Basin accumulated, averaged daily precipitation, evapotranspiration and runoff differ by no more than 10% from observations. Larger deviations occur mainly in summer, and at specific areas.
  • Item
    Evaluating process-based integrated assessment models of climate change mitigation
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2021) Wilson, Charlie; Guivarch, Céline; Kriegler, Elmar; van Ruijven, Bas; van Vuuren, Detlef P.; Krey, Volker; Schwanitz, Valeria Jana; Thompson, Erica L.
    Process-based integrated assessment models (IAMs) project long-term transformation pathways in energy and land-use systems under what-if assumptions. IAM evaluation is necessary to improve the models’ usefulness as scientific tools applicable in the complex and contested domain of climate change mitigation. We contribute the first comprehensive synthesis of process-based IAM evaluation research, drawing on a wide range of examples across six different evaluation methods including historical simulations, stylised facts, and model diagnostics. For each evaluation method, we identify progress and milestones to date, and draw out lessons learnt as well as challenges remaining. We find that each evaluation method has distinctive strengths, as well as constraints on its application. We use these insights to propose a systematic evaluation framework combining multiple methods to establish the appropriateness, interpretability, credibility, and relevance of process-based IAMs as useful scientific tools for informing climate policy. We also set out a programme of evaluation research to be mainstreamed both within and outside the IAM community.
  • Item
    Evaluating Three-Pillar Sustainability Modelling Approaches for Dairy Cattle Production Systems
    (Basel : MDPI, 2021) Díaz de Otálora, Xabier; del Prado, Agustín; Dragoni, Federico; Estellés, Fernando; Amon, Barbara
    Milk production in Europe is facing major challenges to ensure its economic, environmental, and social sustainability. It is essential that holistic concepts are developed to ensure the future sustainability of the sector and to assist farmers and stakeholders in making knowledge-based decisions. In this study, integrated sustainability assessment by means of whole-farm modelling is presented as a valuable approach for identifying factors and mechanisms that could be used to improve the three pillars (3Ps) of sustainability in the context of an increasing awareness of economic profitability, social well-being, and environmental impacts of dairy production systems (DPS). This work aims (i) to create an evaluation framework that enables quantitative analysis of the level of integration of 3P sustainability indicators in whole-farm models and (ii) to test this method. Therefore, an evaluation framework consisting of 35 indicators distributed across the 3Ps of sustainability was used to evaluate three whole-farm models. Overall, the models integrated at least 40% of the proposed indicators. Different results were obtained for each sustainability pillar by each evaluated model. Higher scores were obtained for the environmental pillar, followed by the economic and the social pillars. In conclusion, this evaluation framework was found to be an effective tool that allows potential users to choose among whole-farm models depending on their needs. Pathways for further model development that may be used to integrate the 3P sustainability assessment of DPS in a more complete and detailed way were identified.