Search Results

Now showing 1 - 2 of 2
  • Item
    Climate change under a scenario near 1.5° C of global warming: Monsoon intensification, ocean warming and steric sea level rise
    (München : European Geopyhsical Union, 2011) Schewe, J.; Levermann, A.; Meinshausen, M.
    We present climatic consequences of the Representative Concentration Pathways (RCPs) using the coupled climate model CLIMBER-3α, which contains a statistical-dynamical atmosphere and a three-dimensional ocean model. We compare those with emulations of 19 state-of-the-art atmosphere-ocean general circulation models (AOGCM) using MAGICC6. The RCPs are designed as standard scenarios for the forthcoming IPCC Fifth Assessment Report to span the full range of future greenhouse gas (GHG) concentrations pathways currently discussed. The lowest of the RCP scenarios, RCP3-PD, is projected in CLIMBER-3α to imply a maximal warming by the middle of the 21st century slightly above 1.5 °C and a slow decline of temperatures thereafter, approaching today's level by 2500. We identify two mechanisms that slow down global cooling after GHG concentrations peak: The known inertia induced by mixing-related oceanic heat uptake; and a change in oceanic convection that enhances ocean heat loss in high latitudes, reducing the surface cooling rate by almost 50%. Steric sea level rise under the RCP3-PD scenario continues for 200 years after the peak in surface air temperatures, stabilizing around 2250 at 30 cm. This contrasts with around 1.3 m of steric sea level rise by 2250, and 2 m by 2500, under the highest scenario, RCP8.5. Maximum oceanic warming at intermediate depth (300–800 m) is found to exceed that of the sea surface by the second half of the 21st century under RCP3-PD. This intermediate-depth warming persists for centuries even after surface temperatures have returned to present-day values, with potential consequences for marine ecosystems, oceanic methane hydrates, and ice-shelf stability. Due to an enhanced land-ocean temperature contrast, all scenarios yield an intensification of monsoon rainfall under global warming.
  • Item
    Bite-outs and other depletions of mesospheric electrons
    (Amsterdam [u.a.] : Elsevier, 2011) Friedrich, M.; Rapp, M.; Plane, J.M.C.; Torkar, K.M.
    The ionised mesosphere is less understood than other parts of the ionosphere because of the challenges of making appropriate measurements in this complex region. We use rocket borne in situ measurements of absolute electron density by the Faraday rotation technique and accompanying DC-probe measurements to study the effect of particles on the D-region charge balance. Several examples of electron bite-outs, their actual depth as well as simultaneous observations of positive ions are presented. For a better understanding of the various dependencies we use the ratio Β/αi (attachment rate over ion-ion recombination coefficient), derived from the electron and ion density profiles by applying a simplified ion-chemical scheme, and correlate this term with solar zenith angle and moon brightness. The probable causes are different for day and night; recent in situ measurements support existing hypotheses for daytime cases, but also reveal behaviour at night hitherto not reported in the literature. Within the large range of Β/αi values obtained from the analysis of 28 high latitude night flights one finds that the intensity of scattered sunlight after sunset, and even moonlight, apparently can photodetach electrons from meteoric smoke particles (MSP) and molecular anions. The large range of values itself can best be explained by the variability of the MSPs and by occasionally occurring atomic oxygen impacting on the negative ion chemistry in the night-time mesosphere under disturbed conditions.