Search Results

Now showing 1 - 4 of 4
  • Item
    Hydrothermal carbonization (HTC): Near infrared spectroscopy and partial least-squares regression for determination of selective components in HTC solid and liquid products derived from maize silage
    (Amsterdam : Elsevier, 2014) Reza, M. Toufiq; Becker, Wolfgang; Sachsenheimer, Kerstin; Mumme, Jan
    Near-infrared (NIR) spectroscopy was evaluated as a rapid method of predicting fiber components (hemicellulose, cellulose, lignin, and ash) and selective compounds of hydrochar and corresponding process liquor produced by hydrothermal carbonization (HTC) of maize silage. Several HTC reaction times and temperatures were applied and NIR spectra of both HTC solids and liquids were obtained and correlated with concentration determined from van-Soest fiber analysis, IC, and UHPLC. Partial least-squares regression was applied to calculate models for the prediction of selective substances. The model developed with the spectra had the best performance in 3–7 factors with a correlation coefficient, which varied between 0.9275–0.9880 and 0.9364–0.9957 for compounds in solid and liquid, respectively. Calculated root mean square errors of prediction (RMSEP) were 0.42–5.06 mg/kg. The preliminary results indicate that NIR, a widely applied technique, might be applied to determine chemical compounds in HTC solid and liquid.
  • Item
    Process Analysis of Main Organic Compounds Dissolved in Aqueous Phase by Hydrothermal Processing of Açaí (Euterpe oleraceae, Mart.) Seeds: Influence of Process Temperature, Biomass-to-Water Ratio, and Production Scales
    (Basel : MDPI, 2021) da Silva, Conceição de Maria Sales; de Castro, Douglas Alberto Rocha; Santos, Marcelo Costa; Almeida, Hélio da Silva; Schultze, Maja; Lüder, Ulf; Hoffmann, Thomas; Machado, Nélio Teixeira
    This work aims to systematically investigate the influence of process temperature, biomass-to-water ratio, and production scales (laboratory and pilot) on the chemical composition of aqueous and gaseous phases and mass production of chemicals by hydrothermal processing of Açaí (Euterpe oleraceae, Mart.) seeds. The hydrothermal carbonization was carried out at 175, 200, 225, and 250 °C at 2 °C/min and a biomass-to-water ratio of 1:10; at 250 °C at 2 °C/min and biomass-to-water ratios of 1:10, 1:15, and 1:20 in technical scale; and at 200, 225, and 250 °C at 2 °C/min and a biomass-to-water ratio of 1:10 in laboratory scale. The elemental composition (C, H, N, S) in the solid phase was determined to compute the HHV. The chemical composition of the aqueous phase was determined by GC and HPLC and the volumetric composition of the gaseous phase using an infrared gas analyzer. For the experiments in the pilot test scale with a constant biomass-to-water ratio of 1:10, the yields of solid, liquid, and gaseous phases varied between 53.39 and 37.01% (wt.), 46.61 and 59.19% (wt.), and 0.00 and 3.80% (wt.), respectively. The yield of solids shows a smooth exponential decay with temperature, while that of liquid and gaseous phases showed a smooth growth. By varying the biomass-to-water ratios, the yields of solid, liquid, and gaseous reaction products varied between 53.39 and 32.09% (wt.), 46.61 and 67.28% (wt.), and 0.00 and 0.634% (wt.), respectively. The yield of solids decreased exponentially with increasing water-to-biomass ratio, and that of the liquid phase increased in a sigmoid fashion. For a constant biomass-to-water ratio, the concentrations of furfural and HMF decreased drastically with increasing temperature, reaching a minimum at 250 °C, while that of phenols increased. In addition, the concentrations of CH3COOH and total carboxylic acids increased, reaching a maximum concentration at 250 °C. For constant process temperature, the concentrations of aromatics varied smoothly with temperature. The concentrations of furfural, HMF, and catechol decreased with temperature, while that of phenols increased. The concentrations of CH3COOH and total carboxylic acids decreased exponentially with temperature. Finally, for the experiments with varying water-to-biomass ratios, the productions of chemicals (furfural, HMF, phenols, cathecol, and acetic acid) in the aqueous phase is highly dependent on the biomass-to-water ratio. For the experiments at the laboratory scale with a constant biomass-to-water ratio of 1:10, the yields of solids ranged between 55.9 and 51.1% (wt.), showing not only a linear decay with temperature but also a lower degradation grade. The chemical composition of main organic compounds (furfural, HMF, phenols, catechol, and acetic acid) dissolved in the aqueous phase in laboratory-scale study showed the same behavior as those obtained in the pilot-scale study.
  • Item
    Experimental evaluation and application of genetic programming to develop predictive correlations for hydrochar higher heating value and yield to optimize the energy content
    (Amsterdam [u.a.] : Elsevier, 2022) Marzban, Nader; Libra, Judy A.; Hosseini, Seyyed Hossein; Fischer, Marcus G.; Rotter, Vera Susanne
    The hydrothermal carbonization (HTC) process has been found to consistently improve biomass fuel characteristics by raising the higher heating value (HHV) of the hydrochar as process severity is increased. However, this is usually associated with a decrease in the solid yield (SY) of hydrochar, making it difficult to determine the optimal operating conditions to obtain the highest energy yield (EY), which combines the two parameters. In this study, a graph-based genetic programming (GP) method was used for developing correlations to predict HHV, SY, and EY for hydrochars based on published values from 42 biomasses and a broad range of HTC experimental systems and operating conditions, i.e., 5 ≤ holding time (min) ≤ 2208, 120 ≤ temperature (°C) ≤ 300, and 0. 0096 ≤ biomass to water ratio ≤ 0.5. In addition, experiments were carried out with 5 pomaces at 4 temperatures and two reactor scales, 1 L and 18.75 L. The correlations were evaluated using this experimental data set in order to estimate prediction errors in similar experimental systems. The use of the correlations to predict HTC conditions to achieve the maximum EY is demonstrated for three common feedstocks, wheat straw, sewage sludge, and a fruit pomace. The prediction was confirmed experimentally with pomace at the optimized HTC conditions; we observed 6.9 % error between the measured and predicted EY %. The results show that the correlations can be used to predict the optimal operating conditions to produce hydrochar with the desired fuel characteristics with a minimum of actual HTC runs.
  • Item
    Hydrothermal carbonization as an alternative sanitation technology: Process optimization and development of low-cost reactor
    (Brussels : European Commission, 2022) Chung, Jae Wook; Gerner, Gabriel; Ovsyannikova, Ekaterina; Treichler, Alexander; Baier, Urs; Libra, Judy; Krebs, Rolf
    Background: The provision of safe sanitation services is essential for human well-being and environmental integrity, but it is often lacking in less developed communities with insufficient financial and technical resources. Hydrothermal carbonization (HTC) has been suggested as an alternative sanitation technology, producing value-added products from faecal waste. We evaluated the HTC technology for raw human waste treatment in terms of resource recovery. In addition, we constructed and tested a low-cost HTC reactor for its technical feasibility. Methods: Raw human faeces were hydrothermally treated in a mild severity range (≤ 200 °C and ≤ 1 hr). The total energy recovery was analysed from the energy input, higher heating value (HHV) of hydrochar and biomethane potential of process water. The nutrient contents were recovered through struvite precipitation employing process water and acid leachate from hydrochar ash. A bench-scale low-cost reactor (BLR) was developed using widely available materials and tested for human faeces treatment. Results: The hydrochar had HHVs (23.2 - 25.2 MJ/kg) comparable to bituminous coal. The calorific value of hydrochar accounted for more than 90% of the total energy recovery. Around 78% of phosphorus in feedstock was retained in hydrochar ash, while 15% was in process water. 72% of the initial phosphorus can be recovered as struvite when deficient Mg and NH 4 are supplemented. The experiments with BLR showed stable operation for faecal waste treatment with an energy efficiency comparable to a commercial reactor system. Conclusions: This research presents a proof of concept for the hydrothermal treatment of faecal waste as an alternative sanitation technology, by providing a quantitative evaluation of the resource recovery of energy and nutrients. The experiments with the BLR demonstrate the technical feasibility of the low-cost reactor and support its further development on a larger scale to reach practical implementation.