Search Results

Now showing 1 - 3 of 3
  • Item
    Interconnection between the Indian and the East Asian summer monsoon: Spatial synchronization patterns of extreme rainfall events
    (Chichester [u.a.] : Wiley, 2022) Gupta, Shraddha; Su, Zhen; Boers, Niklas; Kurths, Jürgen; Marwan, Norbert; Pappenberger, Florian
    A deeper understanding of the intricate relationship between the two components of the Asian summer monsoon (ASM)—the Indian summer monsoon (ISM) and the East Asian summer monsoon (EASM)—is crucial to improve the subseasonal forecasting of extreme precipitation events. Using an innovative complex network-based approach, we identify two dominant synchronization pathways between ISM and EASM—a southern mode between the Arabian Sea and southeastern China occurring in June, and a northern mode between the core ISM zone and northern China which peaks in July—and their associated large-scale atmospheric circulation patterns. Furthermore, we discover that certain phases of the Madden–Julian oscillation and the lower frequency mode of the boreal summer intraseasonal oscillation (BSISO) seem to favour the overall synchronization of extreme rainfall events between ISM and EASM while the higher-frequency mode of the BSISO is likely to support the shifting between the modes of ISM–EASM connection.
  • Item
    Meridionally Extending Anomalous Wave Train over Asia During Breaks in the Indian Summer Monsoon
    ([Cham] : Springer International Publishing, 2019) Umakanth, Uppara; Vellore, Ramesh K.; Krishnan, R.; Choudhury, Ayantika Dey; Bisht, Jagat S.H.; Di Capua, Giorgia; Coumou, Dim; Donner, Reik V.
    Anomalous interactions between the Indian summer monsoon (ISM) circulation and subtropical westerlies are known to trigger breaks in the ISM on subseasonal time-scales, characterised by a pattern of suppressed rainfall over central-north India, and enhanced rainfall over the foothills of the central–eastern Himalayas (CEH). An intriguing feature during ISM breaks is the formation of a mid-tropospheric cyclonic circulation anomaly extending over the subtropical and mid-latitude areas of the Asian continent. This study investigates the mechanism of the aforesaid Asian continental mid-tropospheric cyclonic circulation (ACMCC) anomaly using observations and simplified model experiments. The results of our study indicate that the ACMCC during ISM breaks is part of a larger meridional wave train comprising of alternating anticyclonic and cyclonic anomalies that extend poleward from the monsoon region to the Arctic. A lead–lag analysis of mid-tropospheric circulation anomalies suggests that the meridional wave-train generation is linked to latent heating (LH) anomalies over the CEH foothills, Indo-China, and the Indian landmass during ISM breaks. By conducting sensitivity experiments using a simplified global atmospheric general circulation model forced with satellite-derived three-dimensional LH, it is demonstrated that the combined effects of the enhanced LH over the CEH foothills and Indo-China and decreased LH over the Indian landmass during ISM breaks are pivotal for generating the poleward extending meridional wave train and the ACMCC anomaly. At the same time, the spatial extent of the mid-latitude cyclonic anomaly over Far-East Asia is also influenced by the anomalous LH over central–eastern China. While the present findings provide interesting insights into the role of LH anomalies during ISM breaks on the poleward extending meridional wave train, the ACMCC anomaly is found to have important ramifications on the daily rainfall extremes over the Indo-China region. It is revealed from the present analysis that the frequency of extreme rainfall occurrences over Indo-China shows a twofold increase during ISM break periods as compared to active ISM conditions. © 2019, The Author(s).
  • Item
    The impact of COVID-19 lockdown measures on the Indian summer monsoon
    (Bristol : IOP Publ., 2021-7-16) Fadnavis, Suvarna; Sabin, T. P.; Rap, Alexandru; Müller, Rolf; Kubin, Anne; Heinold, Bernd
    Aerosol concentrations over Asia play a key role in modulating the Indian summer monsoon (ISM) rainfall. Lockdown measures imposed to prevent the spread of the COVID-19 pandemic led to substantial reductions in observed Asian aerosol loadings. Here, we use bottom-up estimates of anthropogenic emissions based on national mobility data from Google and Apple, along with simulations from the ECHAM6-HAMMOZ state-of-the-art aerosol-chemistry-climate model to investigate the impact of the reduced aerosol and gases pollution loadings on the ISM. We show that the decrease in anthropogenic emissions led to a 4 W m−2 increase in surface solar radiation over parts of South Asia, which resulted in a strengthening of the ISM. Simultaneously, while natural emission parameterizations are kept the same in all our simulations, the anthropogenic emission reduction led to changes in the atmospheric circulation, causing accumulation of dust over the Tibetan plateau (TP) during the pre-monsoon and monsoon seasons. This accumulated dust has intensified the warm core over the TP that reinforced the intensification of the Hadley circulation. The associated cross-equatorial moisture influx over the Indian landmass led to an enhanced amount of rainfall by 4% (0.2 mm d−1) over the Indian landmass and 5%–15% (0.8–3 mm d−1) over central India. These estimates may vary under the influence of large-scale coupled atmosphere–ocean oscillations (e.g. El Nino Southern Oscillation, Indian Ocean Dipole). Our study indicates that the reduced anthropogenic emissions caused by the unprecedented COVID-19 restrictions had a favourable effect on the hydrological cycle over South Asia, which has been facing water scarcity during the past decades. This emphasizes the need for stringent measures to limit future anthropogenic emissions in South Asia for protecting one of the world's most densely populated regions.