Search Results

Now showing 1 - 2 of 2
  • Item
    Resonant inelastic x-ray incarnation of Young’s double-slit experiment
    (Washington : American Association for the Advancement of Science (A A A S), 2019) Revelli, A.; Moretti, Sala, M.; Monaco, G.; Becker, P.; Bohatý, L.; Hermanns, M.; Koethe, T.C.; Fröhlich, T.; Warzanowski, P.; Lorenz, T.; Streltsov, S.V.; van Loosdrecht, P.H.M.; Khomskii, D.I.; van den Brink, J.; Grüninger, M.
    Young’s archetypal double-slit experiment forms the basis for modern diffraction techniques: The elastic scattering of waves yields an interference pattern that captures the real-space structure. Here, we report on an inelastic incarnation of Young’s experiment and demonstrate that resonant inelastic x-ray scattering (RIXS) measures interference patterns, which reveal the symmetry and character of electronic excited states in the same way as elastic scattering does for the ground state. A prototypical example is provided by the quasi-molecular electronic structure of insulating Ba 3 CeIr 2 O 9 with structural Ir dimers and strong spin-orbit coupling. The double “slits” in this resonant experiment are the highly localized core levels of the two Ir atoms within a dimer. The clear double-slit-type sinusoidal interference patterns that we observe allow us to characterize the electronic excitations, demonstrating the power of RIXS interferometry to unravel the electronic structure of solids containing, e.g., dimers, trimers, ladders, or other superstructures.
  • Item
    High-visibility photonic crystal fiber interferometer as multifunctional sensor
    (Basel : MDPI AG, 2013) Cárdenas-Sevilla, G.A.; Fávero, F.C.; Villatoro, J.
    A photonic crystal fiber (PCF) interferometer that exhibits record fringe contrast (~40 dB) is demonstrated along with its sensing applications. The device operates in reflection mode and consists of a centimeter-long segment of properly selected PCF fusion spliced to single mode optical fibers. Two identical collapsed zones in the PCF combined with its modal properties allow high-visibility interference patterns. The interferometer is suitable for refractometric and liquid level sensing. The measuring refractive index range goes from 1.33 to 1.43 and the maximum resolution is ~1.6 × 10-5.