Search Results

Now showing 1 - 2 of 2
  • Item
    Properties of ns-laser processed polydimethylsiloxane (PDMS)
    (Bristol : IOP Publ., 2016) Atanasov, P.A.; Stankova, N.E.; Nedyalkov, N.N.; Stoyanchov, T.R.; Nikov, R.G.; Fukata, N.; Gerlach, J.W.; Hirsch, D.; Rauschenbach, B.
    The medical-grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial in medicine and for preparation of high-tech devices because of its remarkable properties. In this work, we present the experimental results on drilling holes on the PDMS surface by using ultraviolet, visible or near-infrared ns-laser pulses and on studying the changes of the chemical composition and structure inside the processed areas. The material in the zone of the holes is studied by XRD, ?-Raman analyses and 3D laser microscopy in order to obtain information on the influence of different processing laser parameters, as wavelength, fluence and number of consecutive pulses on the material transformation and its modification.
  • Item
    Convective Nozaki-Bekki holes in a long cavity OCT laser
    (Washington, DC : Soc., 2019) Slepneva, Svetlana; O'Shaughnessy, Ben; Vladimirov, Andrei G.; Rica, Sergio; Viktorov, Evgeny A.; Huyet, Guillaume
    We show, both experimentally and theoretically, that the loss of coherence of a long cavity optical coherence tomography (OCT) laser can be described as a transition from laminar to turbulent flows. We demonstrate that in this strongly dissipative system, the transition happens either via an absolute or a convective instability depending on the laser parameters. In the latter case, the transition occurs via formation of localised structures in the laminar regime, which trigger the formation of growing and drifting puffs of turbulence. Experimentally, we demonstrate that these turbulent bursts are seeded by appearance of Nozaki-Bekki holes, characterised by the zero field amplitude and π phase jumps. Our experimental results are supported with numerical simulations based on the delay differential equations model.