Search Results

Now showing 1 - 1 of 1
  • Item
    Hierarchical Corannuleneā€Based Materials: Energy Transfer and Solidā€State Photophysics
    (Weinheim : Wiley-VCH, 2017-3-23) Rice, Allison M.; Fellows, W. Brett; Dolgopolova, Ekaterina A.; Greytak, Andrew B.; Vannucci, Aaron K.; Smith, Mark D.; Karakalos, Stavros G.; Krause, Jeanette A.; Avdoshenko, Stanislav M.; Popov, Alexey A.; Shustova, Natalia B.
    We report the first example of a donorā€“acceptor corannulene-containing hybrid material with rapid ligand-to-ligand energy transfer (ET). Additionally, we provide the first time-resolved photoluminescence (PL) data for any corannulene-based compounds in the solid state. Comprehensive analysis of PL data in combination with theoretical calculations of donorā€“acceptor exciton coupling was employed to estimate ET rate and efficiency in the prepared material. The ligand-to-ligand ET rate calculated using two models is comparable with that observed in fullerene-containing materials, which are generally considered for molecular electronics development. Thus, the presented studies not only demonstrate the possibility of merging the intrinsic properties of Ļ€-bowls, specifically corannulene derivatives, with the versatility of crystalline hybrid scaffolds, but could also foreshadow the engineering of a novel class of hierarchical corannulene-based hybrid materials for optoelectronic devices.