Search Results

Now showing 1 - 6 of 6
  • Item
    OSL-dating of the Pleistocene-Holocene climatic transition in loess from China, Europe and North America, and evidence for accretionary pedogenesis
    (Amsterdam [u.a.] : Elsevier, 2021) Constantin, D.; Mason, J.A.; Veres, D.; Hambach, U.; Panaiotu, C.; Zeeden, C.; Zhou, L.; Marković, S.B.; Gerasimenko, N.; Avram, A.; Tecsa, V.; Groza-Sacaciu, S.M.; del Valle Villalonga, L.; Begy, R.; Timar-Gabor, A.
    Loess deposits intercalated by paleosols are detailed terrestrial archives of Quaternary climate variability providing information on the global dust cycle and landscape dynamics. Their paleoclimatic significance is often explored by quantifying their mineral magnetic properties due to their sensitivity to local/regional hydroclimate variability. Detailed chronological assessment of such regional proxy records around the climatic transitions allow a better understanding of how regional records react to major global climatic transitions such as the Pleistocene-Holocene climatic transition. Logs of high-resolution magnetic susceptibility and its frequency dependence were used as paleoclimatic proxies to define the environmental transition from the last glacial loess to the current interglacial soil as reflected in nine loess-paleosol sequences across the northern hemisphere, from the Chinese Loess Plateau, the southeastern European loess belt and the central Great Plains, USA. The onset of increase in magnetic susceptibility above typical loess values was used to assess the onset of, and developments during, the Pleistocene-Holocene climatic transition. High-resolution luminescence dating was applied on multiple grain-sizes (4–11 μm, 63–90 μm, 90–125 μm) of quartz extracts from the same sample in order to investigate the timing of Pleistocene-Holocene climatic transition in the investigated sites. The magnetic susceptibility signal shows a smooth and gradual increase for the majority of the sites from the typical low loess values to the interglacial ones. The initiation of this increase, interpreted as recording the initiation of the Pleistocene-Holocene climatic transition at each site, was dated to 14–17.5 ka or even earlier. Our chronological results highlight the need of combining paleoclimatic proxies (magnetic susceptibility) with absolute dating when investigating the Pleistocene-Holocene climatic transition as reflected by the evolution of this proxy in order to avoid chronostratigraphic misinterpretations in loess-paleosol records caused by simple pattern correlation. The detailed luminescence chronologies evidence the continuity of eolian mineral dust accumulation regardless of glacial or interglacial global climatic regimes. Coupled with magnetic susceptibility records this indicates that dust sedimentation and pedogenesis act simultaneously and result in a non-negligible accretional component in the formation of Holocene soils in loess regions across the Northern Hemisphere. The luminescence ages allowed the modeling of accumulation rates for the Holocene soil which are similar for European, Chinese and U.S.A. loess sites investigated and vary from 2 cm ka−1 to 9 cm ka−1. While accretional pedogenesis has often been implicitly or explicitly assumed in paleoclimatic interpretation of loess-paleosol sequences, especially in the Chinese Loess Plateau, our luminescence data add direct evidence for ongoing sedimentation as interglacial soils formed.
  • Item
    Phase transition and anomalous low temperature ferromagnetic phase in Pr 0.6Sr 0.4MnO 3 single crystals
    (New York, NY : Springer Science + Business Media B.V., 2009) Rößler, S.; Harikrishnan, S.; Naveen Kumar, C.M.; Bhat, H.L.; Elizabeth, S.; Rößler, U.K.; Steglich, F.; Wirth, S.
    We report on the magnetic and electrical properties of Pr 0.6Sr 0.4MnO 3 single crystals. This compound undergoes a continuous paramagnetic-ferromagnetic transition with a Curie temperature T C301 K and a first-order structural transition at T S64 K. At T S, the magnetic susceptibility exhibits an abrupt jump, and a corresponding small hump is seen in the resistivity. The critical behavior of the static magnetization and the temperature dependence of the resistivity are consistent with the behavior expected for a nearly isotropic ferromagnet with short-range exchange belonging to the Heisenberg universality class. The magnetization (M-H) curves below T S are anomalous in that the virgin curve lies outside the subsequent M-H loops. The hysteretic structural transition at T S as well as the irreversible magnetization processes below T S can be explained by phase separation between a high-temperature orthorhombic and a low-temperature monoclinic ferromagnetic phase.
  • Item
    Correlation induced magnetic topological phases in the mixed-valence compound SmB6
    (College Park, MD : APS, 2023) Liu, Huimei; Hirschmann, Moritz M.; Sawatzky, George A.; Khaliullin, Giniyat; Schnyder, Andreas P.
    SmB6 is a mixed-valence compound with flat f-electron bands that have a propensity to magnetism. Here, using a realistic Γ8 quartet model, we investigate the dynamical spin susceptibility and describe the in-gap collective mode observed in neutron scattering experiments. We show that as the Sm valence increases with pressure, the magnetic correlations enhance and SmB6 undergoes a first-order phase transition into a metallic antiferromagnetic state, whose symmetry depends on the model parameters. The magnetic orderings give rise to distinct band topologies: while the A-type order leads to an overlap between valence and conduction bands in the form of Dirac nodal lines, the G-type order has a negative indirect gap with weak Z2 indices. We also consider the spin polarized phase under a strong magnetic field, and find that it exhibits Weyl points as well as nodal lines close to the Fermi level. The magnetic phases show markedly different surface states and tunable bulk transport properties, with important implications for experiments. Our theory predicts that a magnetic order can be stabilized also by lifting the Γ8 cubic symmetry, thus explaining the surface magnetism reported in SmB6.
  • Item
    Fermi surface nesting in several transition metal dichalcogenides
    (Milton Park : Taylor & Francis, 2008) Inosov, D.S.; Zabolotnyy, V.B.; Evtushinsky, D.V.; Kordyuk, A.A.; Büchner, B.; Follath, R.; Berger, H.; Borisenko, S.V.
    By means of high-resolution angle-resolved photoelectron spectroscopy (ARPES), we have studied the fermiology of 2H transition metal dichalcogenide polytypes TaSe2, NbSe2 and Cu0.2NbS 2. The tight-binding model of the electronic structure, extracted from ARPES spectra for all three compounds, was used to calculate the Lindhard function (bare spin susceptibility), which reflects the propensity to charge density wave (CDW) instabilities observed in TaSe2 and NbSe 2. We show that though the Fermi surfaces of all three compounds possess an incommensurate nesting vector in the close vicinity of the CDW wave vector, the nesting and ordering wave vectors do not exactly coincide, and there is no direct relationship between the magnitude of the susceptibility at the nesting vector and the CDW transition temperature. The nesting vector persists across the incommensurate CDW transition in TaSe2 as a function of temperature despite the observable variations of the Fermi surface geometry in this temperature range. In Cu0.2NbS2, the nesting vector is present despite different doping levels, which leads us to expect a possible enhancement of the CDW instability with Cu intercalation in the Cu xNbS2 family of materials.
  • Item
    Spin-glass state and reversed magnetic anisotropy induced by Cr doping in the Kitaev magnet α-RuCl3
    (College Park, MD : American Physical Society, 2019) Bastien, G.; Roslova, M.; Haghighi, M.H.; Mehlawat, K.; Hunger, J.; Isaeva, A.; Doert, T.; Vojta, M.; Büchner, B.; Wolter, A.U.B.
    Magnetic properties of the substitution series Ru1-xCrxCl3 were investigated to determine the evolution from the anisotropic Kitaev magnet α-RuCl3 with Jeff=1/2 magnetic Ru3+ ions to the isotropic Heisenberg magnet CrCl3 with S=3/2 magnetic Cr3+ ions. Magnetization measurements on single crystals revealed a reversal of the magnetic anisotropy under doping, which we argue to arise from the competition between anisotropic Kitaev and off-diagonal interactions on the Ru-Ru links and approximately isotropic Cr-Ru and isotropic Cr-Cr interactions. In addition, combined magnetization, ac susceptibility, and specific-heat measurements clearly show the destabilization of the long-range magnetic order of α-RuCl3 in favor of a spin-glass state of Ru1-xCrxCl3 for a low doping of x≤0.1. The corresponding freezing temperature as a function of Cr content shows a broad maximum around x ≤ 0.45.
  • Item
    An astronomical age-depth model and reconstruction of moisture availability in the sediments of Lake Chalco, central Mexico, using borehole logging data
    (Oxford [u.a.] : Elsevier, 2022) Sardar Abadi, Mehrdad; Zeeden, Christian; Ulfers, Arne; Wonik, Thomas
    Understanding the moisture history of low latitudes from the most recent glacial period of the latest Pleistocene to post-glacial warmth in continental tropical regions is hampered by the lack of continuous time series. We conducted downhole spectral gamma (γ) ray and magnetic susceptibility logs over 300 m of lacustrine deposits of Lake Chalco (Mexico City) to reconstruct an age-depth model using an astronomical and correlative approach, and to reconstruct long-term moisture availability. Our results suggest that the Lake Chalco sediments contain several rhythmic alternations with a quasi-cyclic pattern comparable to the Pleistocene benthic stack. This allows us to calculate a time span of about 500,000 years for this sediment deposition. We developed proxies for moisture, detrital input, and salinity, all based on the physical properties of γ-ray spectroscopy and magnetic susceptibility. Our results indicate that Lake Chalco formed during Marine Isotope Stage 13 (MIS13) and the lake level gradually increased over time until the interglacial MIS9. Moisture content is generally higher during interglacials than during glacials. However, two periods, namely MIS6 and MIS4, have higher moisture contents. We developed a model by comparing the obtained moisture proxy with climatic drivers, to understand how different climate systems drove effective moisture availability in the Chalco sub-basin over the past 500,000 years. Carbon dioxide, eccentricity, and precession are all key drivers of the moisture content of Lake Chalco over the past 500,000 years.