Search Results

Now showing 1 - 6 of 6
  • Item
    Robust transverse structures in rescattered photoelectron wavepackets and their consequences
    (Bristol : IOP Publ., 2020) Bredtmann, T.; Patchkovskii, S.
    Initial-state symmetry has been under-appreciated in strong-field spectroscopies, where laser fields dominate the dynamics. We demonstrate numerically that the transverse photoelectron phase structure, arising from the initial-state symmetry, is robust in strong-field rescattering, and has pronounced effects on strong-field photoelectron spectra. Interpretation of rescattering experiments need to take these symmetry effects into account. In turn, robust transverse photoelectron phase structures may enable attosecond sub-Ångström super-resolution imaging with structured electron beams.
  • Item
    Electron Rescattering in a Bicircular Laser Field
    (Bristol : IOP Publ., 2017) Hasović, E.; Becker, W.; Milošević, D.B.
    We investigate high-order above-threshold ionization (HATI) of krypton atoms by a bicircular laser field, which consists of two coplanar co- or counter-rotating circularly polarized fields of frequencies rw and sw. We show that the photoelectron spectra in the HATI process, presented in the momentum plane, exhibit the same discrete rotational symmetry as the driving field. We also analyze HATI spectra for various combinations of the intensities of two field components for co- and counter-rotating fields. We find that the appearance of high-energy plateau for the counter-rotating case is vary sensitive to the laser intensity ratio, while the plateau is always absent for the co-rotating bicircular field.
  • Item
    General Time-Dependent Configuration-Interaction Singles II: The Atomic Case
    (Woodbury, NY : Inst., 2022-10-10) Carlström, Stefanos; Bertolino, Mattias; Dahlström, Jan Marcus; Patchkovskii, Serguei
    We present a specialization of the grid-based implementation of the time-dependent configuration-interaction singles described in the preceding paper [S. Carlström et al., preceding paper, Phys. Rev. A 106, 043104 (2022)]. to the case of spherical symmetry. We describe the intricate time propagator in detail and conclude with a few example calculations. Among these, of note are high-resolution photoelectron spectra in the vicinity of the Fano resonances in photoionization of neon and spin-polarized photoelectrons from xenon, in agreement with recent experiments.
  • Item
    Low-energy constraints on photoelectron spectra measured from liquid water and aqueous solutions
    (Cambridge : RSC Publ., 2021) Malerz, Sebastian; Trinter, Florian; Hergenhahn, Uwe; Ghrist, Aaron; Ali, Hebatallah; Nicolas, Christophe; Saak, Clara-Magdalena; Richter, Clemens; Hartweg, Sebastian; Nahon, Laurent; Lee, Chin; Goy, Claudia; Neumark, Daniel M; Meijer, Gerard; Wilkinson, Iain; Winter, Bernd; Thürmer, Stephan
    We report on the effects of electron collision and indirect ionization processes, occurring at photoexcitation and electron kinetic energies well below 30 eV, on the photoemission spectra of liquid water. We show that the nascent photoelectron spectrum and, hence, the inferred electron binding energy can only be accurately determined if electron energies are large enough that cross sections for quasi-elastic scattering processes, such as vibrational excitation, are negligible. Otherwise, quasi-elastic scattering leads to strong, down-to-few-meV kinetic energy scattering losses from the direct photoelectron features, which manifest in severely distorted intrinsic photoelectron peak shapes. The associated cross-over point from predominant (known) electronically inelastic to quasi-elastic scattering seems to arise at surprisingly large electron kinetic energies, of approximately 10–14 eV. Concomitantly, we present evidence for the onset of indirect, autoionization phenomena (occurring via superexcited states) within a few eV of the primary and secondary ionization thresholds. These processes are inferred to compete with the direct ionization channels and primarily produce low-energy photoelectrons at photon and electron impact excitation energies below ∼15 eV. Our results highlight that vibrational inelastic electron scattering processes and neutral photoexcitation and autoionization channels become increasingly important when photon and electron kinetic energies are decreased towards the ionization threshold. Correspondingly, we show that for neat water and aqueous solutions, great care must be taken when quantitatively analyzing photoelectron spectra measured too close to the ionization threshold. Such care is essential for the accurate determination of solvent and solute ionization energies as well as photoelectron branching ratios and peak magnitudes.
  • Item
    Atomic processes in bicircular fields
    (Bristol : IOP Publ., 2016) Odžak, S.; Hasović, E.; Becker, W.; Milošević, D.B.
    We investigate laser-assisted electron-ion recombination (LAR), high-order harmonic generation (HHG) and above-threshold ionization (ATI) of argon atoms by a bicircular laser field, which consists of two coplanar counter-rotating circularly polarized fields of frequencies rω and sω. The energy of soft x rays generated in the LAR process is analyzed as a function of the incident electron angle and numerical results of direct recombination of electrons with Ar+ ions are presented. We also present the results of HHG by a bicircular field and confirm the selection rules derived earlier for inert-gas atoms in a p ground state. We show that the photoelectron spectra in the ATI process, presented in the momentum plane, as well as the LAR spectra exhibit the same discrete rotational symmetry as the applied field.
  • Item
    Attosecond electron spectroscopy using a novel interferometric pump-probe technique
    (College Park, Md. : APS, 2010) Mauritsson, J.; Remetter, T.; Swoboda, M.; Klünder, K.; L'Huillier, A.; Schafer, K.J.; Ghafur, O.; Kelkensberg, F.; Siu, W.; Johnsson, P.; Vrakking, M.J.J.; Znakovskaya, I.; Uphues, T.; Zherebtsov, S.; Kling, M.F.; Lépine, F.; Benedetti, E.; Ferrari, F.; Sansone, G.; Nisoli, M.
    We present an interferometric pump-probe technique for the characterization of attosecond electron wave packets (WPs) that uses a free WP as a reference to measure a bound WP. We demonstrate our method by exciting helium atoms using an attosecond pulse (AP) with a bandwidth centered near the ionization threshold, thus creating both a bound and a free WP simultaneously. After a variable delay, the bound WP is ionized by a few-cycle infrared laser precisely synchronized to the original AP. By measuring the delay-dependent photoelectron spectrum we obtain an interferogram that contains both quantum beats as well as multipath interference. Analysis of the interferogram allows us to determine the bound WP components with a spectral resolution much better than the inverse of the AP duration. © 2010 The American Physical Society.