Search Results

Now showing 1 - 2 of 2
  • Item
    Computational Simulations of the Lateral-Photovoltage-Scanning-Method
    (London [u.a.] : Institute of Physics, 2018) Kayser, S.; Lüdge, A.; Böttcher, K.
    The major task for the Lateral-Photovoltage-Scanning-Method is to detect doping striations and the shape of the solid-liquid-interface of an indirect semiconductor crystal. This method is sensitive to the gradient of the charge carrier density. Attempting to simulate the signal generation of the LPS-Method, we are using a three dimensional Finite Volume approach for solving the van Roosbroeck equations with COMSOL Multiphysics in a silicon sample. We show that the simulated LPS-voltage is directly proportional to the gradient of a given doping distribution, which is also the case for the measured LPS-voltage.
  • Item
    Electron microscopy of nanoparticle superlattice formation at a solid-liquid interface in nonpolar liquids
    (Washington, DC : American Association for the Advancement of Science, 2020) Cepeda-Perez, E.; Doblas, D.; Kraus, T.; de Jonge, N.
    Nanoparticle superlattice films form at the solid-liquid interface and are important for mesoscale materials, but are notoriously difficult to analyze before they are fully dried. Here, the early stages of nanoparticle assembly were studied at solid-liquid interfaces using liquid-phase electron microscopy. Oleylamine-stabilized gold nanoparticles spontaneously formed thin layers on a silicon nitride (SiN) membrane window of the liquid enclosure. Dense packings of hexagonal symmetry were obtained for the first monolayer independent of the nonpolar solvent type. The second layer, however, exhibited geometries ranging from dense packing in a hexagonal honeycomb structure to quasi-crystalline particle arrangements depending on the dielectric constant of the liquid. The complex structures formed by the weaker interactions in the second particle layer were preserved, while the surface remained immersed in liquid. Fine-tuning the properties of the involved materials can thus be used to control the three-dimensional geometry of a superlattice including quasi-crystals.