Search Results

Now showing 1 - 2 of 2
  • Item
    Newly formed downflow lanes in exploding granules in the solar photosphere
    (Les Ulis : EDP Sciences, 2021) Ellwarth, M.; Fischer, C.E.; Vitas, N.; Schmiz, S.; Schmidt, W.
    Context. Exploding granules have drawn renewed interest because of their interaction with the magnetic field (either emerging or already present). Especially the newly forming downflow lanes developing in their centre seem to be eligible candidates for the intensification of magnetic fields. We analyse spectroscopic data from two different instruments in order to study the intricate velocity pattern within the newly forming downflow lanes in detail. Aims. We aim to examine general properties of a number of exploding granules, such as their lifetime and extend. To gain a better understanding of the formation process of the developing intergranular lane in exploding granules, we study the temporal evolution and height dependence of the line-of-sight velocities at their formation location. Additionally, we search for evidence that exploding granules act as acoustic sources. Methods. We investigated the evolution of several exploding granules using data taken with the Interferometric Bidimensional Spectrometer and the Imaging Magnetograph eXperiment. Velocities for different heights of the solar atmosphere were determined by computing bisectors of the Fe I 6173.0 Å and the Fe I 5250.2 Å lines. We performed a wavelet analysis to study the intensity and velocity oscillations within and around exploding granules. We also compared our observational findings with predictions of numerical simulations. Results. Exploding granules have significantly longer lifetimes (10 to 15 min) than regular granules. Exploding granules larger than 3.8″ form an independent intergranular lane during their decay phase, while smaller granules usually fade away or disappear into the intergranular area (we find only one exception of a smaller exploding granule that also forms an intergranular lane). For all exploding granules that form a new intergranular downflow lane, we find a temporal height-dependent shift with respect to the maximum of the downflow velocity. Our suggestion that this results from a complex atmospheric structure within the newly forming downflow lane is supported by the comparison with synthesised profiles inferred from the simulations. We found an enhanced wavelet power with periods between 120 s to 190 s seen in the intensity and velocity oscillations of high photospheric or chromospheric spectral lines in the region of the dark core of an exploding granule. © M. Ellwarth et al. 2021.
  • Item
    Stochastic entropy production in the quite Sun magnetic fields
    (Oxford : Oxford Univ. Press, 2019) Gorobets, Andriy Y.; Berdyugina, Svetlana V.
    The second law of thermodynamics imposes an increase of macroscopic entropy with time in an isolated system. Microscopically, however, the entropy production can be negative for a single, microscopic realization of a thermodynamic process. The so-called fluctuation theorems provide exact relations between the stochastic entropy consumption and generation. Here, we analyse pixel-to-pixel fluctuations in time of small-scale magnetic fields (SSMF) in the quiet Sun observed with the SDO/HMI instrument. We demonstrate that entropy generated by SSMF obeys the fluctuation theorems. In particular, the SSMF entropy consumption probability is exactly exponentially smaller than the SSMF entropy generation probability. This may have fundamental implications for the magnetic energy budget of the Sun. © The Author(s) 2018. Published by Oxford University Press on behalf of The Royal Astronomical Society.