Search Results

Now showing 1 - 10 of 54
  • Item
    In situ measurements of optical properties at Tinfou (Morocco) during the Saharan Mineral Dust Experiment SAMUM 2006
    (Milton Park : Taylor & Francis, 2017) Schladitz, A.; Müller, T.; Kaaden, N.; Massling, A.; Kandler, K.; Ebert, M.; Weinbruch, S.; Deutscher, C.; Wiedensohler, A.
    In situ measurements of optical and physical properties of mineral dust were performed at the outskirts of the Saharan Desert in the framework of the Saharan Mineral Dust Experiment part 1 (SAMUM-1). Goals of the field study were to achieve information on the extent and composition of the dust particle size distribution and the optical properties of dust at the ground. For the particle number size distribution, measured with a DMPS/APS, a size dependent dynamic shape factor was considered. The mean refractive index of the particles in this field study is 1.53–4.1 × 10-3i at 537 nm wavelength and 1.53–3.1 × 10-3i at 637 nm wavelength derived from measurements of scattering and absorption coefficients, as well as the particle size distribution. Whereas the real part of the refractive index is rather constant, the imaginary part varies depending on the mineral dust concentrations. For high dust concentration the single scattering albedo is primarily influenced by iron oxide and is 0.96 ± 0.02 and 0.98 ± 0.01 at 537 nm and 637 nm wavelength, respectively. During low dust concentration the single scattering albedo is more influenced by a soot-type absorber and is 0.89 ± 0.02 and 0.93 ± 0.01 for the same wavelengths.
  • Item
    Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006
    (Milton Park : Taylor & Francis, 2017) Kandler, K.; Schütz, L.; Deutscher, C.; Ebert, M.; Hofmann, H.; Jäckel, S.; Jaenicke, R.; Knippertz, P.; Lieke, K.; Massling, A.; Petzold, A.; Schladitz, A.; Weinzierl, B.; Wiedensohler, A.; Zorn, S.; Weinbruch, S.
    During the SAMUM 2006 field campaign in southern Morocco, physical and chemical properties of desert aerosols were measured. Mass concentrations ranging from 30μgm−3 for PM2.5 under desert background conditions up to 300 000μgm−3 for total suspended particles (TSP) during moderate dust storms were measured. TSP dust concentrations are correlated with the local wind speed, whereasPM10 andPM2.5 concentrations are determined by advection from distant sources. Size distributions were measured for particles with diameter between 20 nm and 500μm (parametrizations are given). Two major regimes of the size spectrum can be distinguished. For particles smaller than 500 nm diameter, the distributions show maxima around 80 nm, widely unaffected of varying meteorological and dust emission conditions. For particles larger than 500 nm, the range of variation may be up to one order of magnitude and up to three orders of magnitude for particles larger than 10μm. The mineralogical composition of aerosol bulk samples was measured by X-ray powder diffraction. Major constituents of the aerosol are quartz, potassium feldspar, plagioclase, calcite, hematite and the clay minerals illite, kaolinite and chlorite. A small temporal variability of the bulk mineralogical composition was encountered. The chemical composition of approximately 74 000 particles was determined by electron microscopic single particle analysis. Three size regimes are identified: for smaller than 500 nm in diameter, the aerosol consists of sulphates and mineral dust. For larger than 500 nm up to 50μm, mineral dust dominates, consisting mainly of silicates, and—to a lesser extent—carbonates and quartz. For diameters larger than 50μm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). The particle aspect ratio was measured for all analysed particles. Its size dependence reflects that of the chemical composition. For larger than 500 nm particle diameter, a median aspect ratio of 1.6 is measured. Towards smaller particles, it decreases to about 1.3 (parametrizations are given). From the chemical/mineralogical composition, the aerosol complex refractive index was determined for several wavelengths from ultraviolet to near-infrared. Both real and imaginary parts show lower values for particles smaller than 500 nm in diameter (1.55–2.8 × 10−3i at 530 nm) and slightly higher values for larger particles (1.57–3.7 × 10−3i at 530 nm).
  • Item
    How to find bananas in the atmospheric aerosol': New approach for analyzing atmospheric nucleation and growth events
    (Milton Park : Taylor & Francis, 2017) Heintzenberg, Jost; Wehner, Birgit; Birmili, Wolfram
    We have devised a new search algorithm for secondary particle formation events, or ‘nucleation events’ in data sets of atmospheric particle size distributions. The search algorithm is simple and based on the investigation of 18 integral parameters of the particle size distribution, three of which were found to be most relevant for identifying nucleation events. The algorithm is tested using long-term size distribution data sets of high-size resolution observed at Melpitz, Hohenpeissenberg, and Leipzig, Germany, and Beijing, China, thereby covering a wide range of clean and polluted conditions. By specifying the particular training sets, the method can be used by other researchers with different data sets or different research goals. The same search approach could be applied to identify and analyze other systematic changes in size distribution such as during frontal passages or sand storms. As an example application of the new algorithm, the 50 strongest nucleation events (‘bananas’) at each of the four sites are analyzed statistically in terms of average changes of integral parameters of the particle size distribution.
  • Item
    Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space-based multi-angle imaging
    (Milton Park : Taylor & Francis, 2017) Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Esselborn, Michael; Fiebig, Marcus; Heese, Birgit; Knippertz, Peter; Müller, Detlef; Schladitz, Alexander; Von Hoyningen-HUENE, Wolfgang
    Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite’s larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05–0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR’s ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.
  • Item
    Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM
    (Milton Park : Taylor & Francis, 2017) Tesche, Matthias; Ansmann, Albert; MüLLER, Detlef; Althausen, Dietrich; Mattis, Ina; Heese, Birgit; Freudenthaler, Volker; Wiegner, Matthias; Esselborn, Michael; Pisani, Gianluca; Knippertz, Peter
    Three ground-based Raman lidars and an airborne high-spectral-resolution lidar (HSRL) were operated duringSAMUM 2006 in southern Morocco to measure height profiles of the volume extinction coefficient, the extinction-to-backscatter ratio and the depolarization ratio of dust particles in the Saharan dust layer at several wavelengths. Aerosol Robotic Network (AERONET) Sun photometer observations and radiosoundings of meteorological parameters complemented the ground-based activities at the SAMUM station of Ouarzazate. Four case studies are presented. Two case studies deal with the comparison of observations of the three ground-based lidars during a heavy dust outbreak and of the ground-based lidars with the airborne lidar. Two further cases show profile observations during satellite overpasses on 19 May and 4 June 2006. The height resolved statistical analysis reveals that the dust layer top typically reaches 4–6 km height above sea level (a.s.l.), sometimes even 7 km a.s.l.. Usually, a vertically inhomogeneous dust plume with internal dust layers was observed in the morning before the evolution of the boundary layer started. The Saharan dust layer was well mixed in the early evening. The 500 nm dust optical depth ranged from 0.2–0.8 at the field site south of the High Atlas mountains, Ångström exponents derived from photometer and lidar data were between 0–0.4. The volume extinction coefficients (355, 532 nm) varied from 30–300Mm−1 with a mean value of 100Mm−1 in the lowest 4 km a.s.l.. On average, extinction-to-backscatter ratios of 53–55 sr (±7–13 sr) were obtained at 355, 532 and 1064 nm.
  • Item
    Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006
    (Milton Park : Taylor & Francis, 2017) Freudenthaler, Volker; Esselborn, Michael; Wiegner, Matthias; Heese, Birgit; Tesche, Matthias; Ansmann, Albert; Müller, Detlef; Althausen, Dietrich; Wirth, Martin; Fix, Andreas; Ehret, Gerhard; Knippertz, Peter; Toledano, Carlos; Gasteiger, Josef; Garhammer, Markus; Seefeldner, Meinhard
    Vertical profiles of the linear particle depolarization ratio of pure dust clouds were measured during the Saharan Mineral Dust Experiment (SAMUM) at Ouarzazate, Morocco (30.9◦N, –6.9◦E), close to source regions in May–June 2006, with four lidar systems at four wavelengths (355, 532, 710 and 1064 nm). The intercomparison of the lidar systems is accompanied by a discussion of the different calibration methods, including a new, advanced method, and a detailed error analysis. Over the whole SAMUM periode pure dust layers show a mean linear particle depolarization ratio at 532 nm of 0.31, in the range between 0.27 and 0.35, with a mean Ångström exponent (AE, 440–870 nm) of 0.18 (range 0.04–0.34) and still high mean linear particle depolarization ratio between 0.21 and 0.25 during periods with aerosol optical thickness less than 0.1, with a mean AE of 0.76 (range 0.65–1.00), which represents a negative correlation of the linear particle depolarization ratio with the AE. A slight decrease of the linear particle depolarization ratio with wavelength was found between 532 and 1064 nm from 0.31 ± 0.03 to 0.27 ± 0.04.
  • Item
    Vertically resolved dust optical properties during SAMUM: Tinfou compared to Ouarzazate
    (Milton Park : Taylor & Francis, 2017) Heese, Birgit; Althausen, Dietrich; Dinter, Tilman; Esselborn, Michael; Müller, Thomas; Tesche, Matthias; Wiegner, Matthias
    Vertical profiles of dust key optical properties are presented from measurements during the Saharan Mineral Dust Experiment (SAMUM) by Raman and depolarization lidar at two ground-based sites and by airborne high spectral resolution lidar. One of the sites, Tinfou, is located close to the border of the Sahara in Southern Morocco and was the main in situ site during SAMUM. The other site was Ouarzazate airport, the main lidar site. From the lidar measurements the spatial distribution of the dust between Tinfou and Ouarzazate was derived for 1 d. The retrieved profiles of backscatter and extinction coefficients and particle depolarization ratios show comparable dust optical properties, a similar vertical structure of the dust layer, and a height of about 4 km asl at both sites. The airborne cross-section of the extinction coefficient at the two sites confirms the low variability in dust properties. Although the general picture of the dust layer was similar, the lidar measurements reveal a higher dust load closer to the dust source. Nevertheless, the observed intensive optical properties were the same. These results indicate that the lidar measurements at two sites close to the dust source are both representative for the SAMUM dust conditions.
  • Item
    The atmospheric aerosol over Siberia, as seen from the 300 m ZOTTO tower
    (Milton Park : Taylor & Francis, 2017) Heintzenberg, Jost; Birmili, Wolfram; Theiss, Detlef; Kisilyakhov, Yegor
    This report describes a unique setup for aerosol measurements at the new long-term Tall Tower monitoring facility near Zotino, Siberia (ZOTTO). Through two inlets at 50 and 300 m aerosol particle number size distributions are measured since September 2006 in the size range 15–835 nanometer dry diameter. Until the end of May 2007 total number (N300) concentrations at 300 m height ranged between 400 cm-3 (5%) and 4000 cm-3 (95%) with a median of 1200 cm-3, which is rather high for a nearly uninhabited boreal forest region during the low productivity period of the year. Fitting 1-h average distributions with a maximum of four lognormal functions yielded frequent ultrafine modes below 20 nm at 50 m height than at 300 m, whereas the latter height more frequently showed an aged nucleation mode near 30 nm. The positions of Aitken (≈80 nm) and accumulation modes (≈210 nm) were very similar at both inlet heights, the very sharp latter one being the most frequent of all modes. The encouraging first results let us expect exciting newfindings during the summer period with frequent forest fires and secondary particle sources from vegetation emissions.
  • Item
    State of mixing, shape factor, number size distribution, and hygroscopic growth of the Saharan anthropogenic and mineral dust aerosol at Tinfou, Morocco
    (Milton Park : Taylor & Francis, 2017) Kaaden, N.; Massling, A.; Schladitz, A.; Müller, T.; Kandler, K.; Schütz, L.; Weinzierl, B.; Petzold, A.; Tesche, M.; Leinert, S.; Deutscher, C.; Ebert, M.; Weinbruch, S.; Wiedensohler, A.
    The Saharan Mineral Dust Experiment (SAMUM) was conducted in May and June 2006 in Tinfou, Morocco. A H-TDMA system and a H-DMA-APS system were used to obtain hygroscopic properties of mineral dust particles at 85% RH. Dynamic shape factors of 1.11, 1.19 and 1.25 were determined for the volume equivalent diameters 720, 840 and 960 nm, respectively. During a dust event, the hydrophobic number fraction of 250 and 350 nm particles increased significantly from 30 and 65% to 53 and 75%, respectively, indicating that mineral dust particles can be as small as 200 nm in diameter. Lognormal functions for mineral dust number size distributions were obtained from total particle number size distributions and fractions of hydrophobic particles. The geometric mean diameter for Saharan dust particles was 715 nm during the dust event and 570 nm for the Saharan background aerosol. Measurements of hygroscopic growth showed that the Saharan aerosol consists of an anthropogenic fraction (predominantly non natural sulphate and carbonaceous particles) and of mineral dust particles. Hygroscopic growth and hysteresis curve measurements of the ‘more’ hygroscopic particle fraction indicated ammonium sulphate as a main component of the anthropogenic aerosol. Particles larger than 720 nm in diameter were completely hydrophobic meaning that mineral dust particles are not hygroscopic.
  • Item
    In situ aerosol characterization at Cape Verde, Part 1: Particle number size distributions, hygroscopic growth and state of mixing of the marine and Saharan dust aerosol
    (Milton Park : Taylor & Francis, 2017) Schladitz, Alexander; Müller, Thomas; Nowak, Andreas; Kandler, Konrad; Lieke, Kirsten; Massling, Andreas; Wiedensohler, Alfred
    Particle number size distributions and hygroscopic properties of marine and Saharan dust aerosol were investigated during the SAMUM-2 field study at Cape Verde in winter 2008. Aitken and accumulation mode particles were mainly assigned to the marine aerosol, whereas coarse mode particles were composed of sea-salt and a variable fraction of Saharan mineral dust. A new methodical approach was used to derive hygroscopic growth and state of mixing for a particle size range (volume equivalent) from dpve = 26 nm to 10 μm. For hygroscopic particles with dpve < 100 nm, the median hygroscopicity parameter κ is 0.35. From 100 nm < dpve < 350 nm, κ increases to 0.65. For larger particles, κ at dpve = 350 nm was used. For nearly hydrophobic particles, κ is between 0 and 0.1 for dpve < 250 nm and decreases to 0 for dpve > 250 nm. The mixing state of Saharan dust in terms of the number fraction of nearly hydrophobic particles showed the highest variation and ranges from 0.3 to almost 1. This study was used to perform a successful mass closure at ambient conditions and demonstrates the important role of hygroscopic growth of large sea-salt particles.