Search Results

Now showing 1 - 3 of 3
  • Item
    Chemical composition and mixing-state of ice residuals sampled within mixed phase clouds
    (München : European Geopyhsical Union, 2011) Ebert, M.; Worringen, A.; Benker, N.; Mertes, S.; Weingartner, E.; Weinbruch, S.
    During an intensive campaign at the high alpine research station Jungfraujoch, Switzerland, in February/March 2006 ice particle residuals within mixed-phase clouds were sampled using the Ice-counterflow virtual impactor (Ice-CVI). Size, morphology, chemical composition, mineralogy and mixing state of the ice residual and the interstitial (i.e., non-activated) aerosol particles were analyzed by scanning and transmission electron microscopy. Ice nuclei (IN) were identified from the significant enrichment of particle groups in the ice residual (IR) samples relative to the interstitial aerosol. In terms of number lead-bearing particles are enriched by a factor of approximately 25, complex internal mixtures with silicates or metal oxides as major components by a factor of 11, and mixtures of secondary aerosol and carbonaceous material (C-O-S particles) by a factor of 2. Other particle groups (sulfates, sea salt, Ca-rich particles, external silicates) observed in the ice-residual samples cannot be assigned unambiguously as IN. Between 9 and 24% of all IR are Pb-bearing particles. Pb was found as major component in around 10% of these particles (PbO, PbCl2). In the other particles, Pb was found as some 100 nm sized agglomerates consisting of 3–8 nm sized primary particles (PbS, elemental Pb). C-O-S particles are present in the IR at an abundance of 17–27%. The soot component within these particles is strongly aged. Complex internal mixtures occur in the IR at an abundance of 9–15%. Most IN identified at the Jungfraujoch station are internal mixtures containing anthropogenic components (either as main or minor constituent), and it is concluded that admixture of the anthropogenic component is responsible for the increased IN efficiency within mixed phase clouds. The mixing state appears to be a key parameter for the ice nucleation behaviour that cannot be predicted from the sole knowledge of the main component of an individual particle.
  • Item
    A method for detecting the presence of organic fraction in nucleation mode sized particles
    (München : European Geopyhsical Union, 2005) Vaattovaara, P.; Räsänen, M.; Kühn, T.; Joutsensaari, J.; Laaksonen, A.
    New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm) and the lower end of Aitken mode particles (d≤50 nm) is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer) method to shed light on the presence of an organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10 nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various oxidized organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.
  • Item
    Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: Implications for regional direct radiative forcing under clean and polluted conditions
    (München : European Geopyhsical Union, 2011) Stock, M.; Cheng, Y.F.; Birmili, W.; Massling, A.; Wehner, B.; Müller, T.; Leinert, S.; Kalivitis, N.; Mihalopoulos, N.; Wiedensohler, A.
    This work examines the effect of direct radiative forcing of aerosols in the eastern Mediterranean troposphere as a function of air mass composition, particle size distribution and hygroscopicity, and relative humidity (RH). During intensive field measurements on the island of Crete, Greece, the hygroscopic properties of atmospheric particles were determined using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) and a Hygroscopicity Differential Mobility Analyzer-Aerodynamic Particle Sizer (H-DMA-APS). Similar to former studies, the H-TDMA identified three hygroscopic sub-fractions of particles in the sub-μm range: a more hygroscopic group, a less hygroscopic group and a nearly hydrophobic particle group. The average hygroscopic particle growth factors at 90 % RH were a significant function of particle mobility diameter (Dp): 1.42 (± 0.05) at 30 nm compared to 1.63 (± 0.07) at 250 nm. The H-DMA-APS identified up to three hygroscopic sub-fractions at mobility diameters of 1.0 and 1.2 μm. The data recorded between 12 August and 20 October 2005 were classified into four distinct synoptic-scale air mass types distinguishing between different regions of origin (western Mediterranean vs. the Aegean Sea) as well as the degree of continental pollution (marine vs. continentally influenced). The hygroscopic properties of particles with diameter Dp≥150 nm showed the most pronounced dependency on air mass origin, with growth factors in marine air masses exceeding those in continentally influenced air masses. Particle size distributions and hygroscopic growth factors were used to calculate aerosol light scattering coefficients at ambient RH using a Mie model. A main result was the pronounced enhancement of particle scattering over the eastern Mediterranean due to hygroscopic growth, both in the marine and continentally influenced air masses. When RH reached its summer daytime values around 70–80 %, up to 50–70 % of the calculated visibility reduction was due to the hygroscopic growth of the particles by water compared to the effect of the dry particles alone. The estimated aerosol direct radiative forcings for both, marine and continentally influenced air masses were negative indicating a net cooling of the atmosphere due to the aerosol. The radiative forcing ΔFr was nevertheless governed by the total aerosol concentration most of the time: ΔFr was typically more negative for continentally influenced aerosols (ca. −4 W m−2) compared to rather clean marine aerosols (ca. −1.5 W m−2). When RH occasionally reached 90 % in marine air masses, ΔFr even reached values down to −7 W m−2. Our results emphasize, on the basis of explicit particle hygroscopicity measurements, the relevance of ambient RH for the radiative forcing of regional atmospheres.