Search Results

Now showing 1 - 2 of 2
  • Item
    Evaluation on the role of sulfuric acid in the mechanisms of new particle formation for Beijing case
    (München : European Geopyhsical Union, 2011) Wang, Z.B.; Hu, M.; Yue, D.L.; Zheng, J.; Zhang, R.Y.; Wiedensohler, A.; Wu, Z.J.; Nieminen, T.; Boy, M.
    New particle formation (NPF) is considered as an important mechanism for gas-to-particle transformation, and gaseous sulfuric acid is believed as a crucial precursor. Up to now few field-based studies on nucleation mechanisms and the role of sulfuric acid were conducted in China. In this study, simultaneously measurements of particle number size distributions and gaseous sulfuric acid concentrations were performed from July to September in 2008. Totally, 22 new particle formation events were observed during the entire 85 campaign days. The results show that in the case of both higher source and sink values, the result of the competition between source and sink is more likely the key limiting factor to determine the observation of NPF events in Beijing. The concentrations of gaseous sulfuric acid show good correlations with freshly nucleated particles (N3-6 and formation rates (J3 and J1.5. The power-law relationship between H2SO4 concentration and N3-6 or J is adopted to explore the nucleation mechanism. The exponents are showed a great range (from 1 to 7). More than half of the NPF events exhibit an exponent larger than 2.5. For these cases, the thermodynamic process works better than the activation or kinetic nucleation theories to explain the nucleation events in urban atmosphere of Beijing.
  • Item
    A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain
    (München : European Geopyhsical Union, 2014) Bian, Y.X.; Zhao, C.S.; Ma, N.; Chen, J.; Xu, W.Y.
    Water can be a major component of aerosol particles, also serving as a medium for aqueous-phase reactions. In this study, a novel method is presented to calculate the aerosol liquid water content at high relative humidity based on measurements of aerosol hygroscopic growth factor, particle number size distribution and relative humidity in the Haze in China (HaChi) summer field campaign (July–August 2009) in the North China Plain. The aerosol liquid water content calculated using this method agreed well with that calculated using a thermodynamic equilibrium model (ISORROPIA II) at high relative humidity (>60%) with a correlation coefficient of 0.96. At low relative humidity (<60%), an underestimation was found in the calculated aerosol liquid water content by the thermodynamic equilibrium model. This discrepancy mainly resulted from the ISORROPIA II model, which only considered limited aerosol chemical compositions. The mean and maximum values of aerosol liquid water content during the HaChi campaign reached 1.69 × 10−4 g m−3 and 9.71 × 10−4 g m−3, respectively. A distinct diurnal variation of the aerosol liquid water content was found, with lower values during daytime and higher ones at night. The aerosol liquid water content depended strongly on the relative humidity. The aerosol liquid water content in the accumulation mode dominated the total aerosol liquid water content.