Search Results

Now showing 1 - 4 of 4
  • Item
    Liquid-Phase Electron Microscopy for Soft Matter Science and Biology
    (Weinheim : Wiley-VCH Verlag, 2020) Wu, H.; Friedrich, H.; Patterson, J.P.; Sommerdijk, N.A.J.M.; de Jonge, N.
    Innovations in liquid-phase electron microscopy (LP-EM) have made it possible to perform experiments at the optimized conditions needed to examine soft matter. The main obstacle is conducting experiments in such a way that electron beam radiation can be used to obtain answers for scientific questions without changing the structure and (bio)chemical processes in the sample due to the influence of the radiation. By overcoming these experimental difficulties at least partially, LP-EM has evolved into a new microscopy method with nanometer spatial resolution and sub-second temporal resolution for analysis of soft matter in materials science and biology. Both experimental design and applications of LP-EM for soft matter materials science and biological research are reviewed, and a perspective of possible future directions is given.
  • Item
    Enhancing laser beam performance by interfering intense laser beamlets
    ([London] : Nature Publishing Group UK, 2019) Morace, A.; Iwata, N.; Sentoku, Y.; Mima, K.; Arikawa, Y.; Yogo, A.; Andreev, A.; Tosaki, S.; Vaisseau, X.; Abe, Y.; Kojima, S.; Sakata, S.; Hata, M.; Lee, S.; Matsuo, K.; Kamitsukasa, N.; Norimatsu, T.; Kawanaka, J.; Tokita, S.; Miyanaga, N.; Shiraga, H.; Sakawa, Y.; Nakai, M.; Nishimura, H.; Azechi, H.; Fujioka, S.; Kodama, R.
    Increasing the laser energy absorption into energetic particle beams represents a longstanding quest in intense laser-plasma physics. During the interaction with matter, part of the laser energy is converted into relativistic electron beams, which are the origin of secondary sources of energetic ions, γ-rays and neutrons. Here we experimentally demonstrate that using multiple coherent laser beamlets spatially and temporally overlapped, thus producing an interference pattern in the laser focus, significantly improves the laser energy conversion efficiency into hot electrons, compared to one beam with the same energy and nominal intensity as the four beamlets combined. Two-dimensional particle-in-cell simulations support the experimental results, suggesting that beamlet interference pattern induces a periodical shaping of the critical density, ultimately playing a key-role in enhancing the laser-to-electron energy conversion efficiency. This method is rather insensitive to laser pulse contrast and duration, making this approach robust and suitable to many existing facilities.
  • Item
    A study on the material properties of novel PEGDA/gelatin hybrid hydrogels polymerized by electron beam irradiation
    (Lausanne : Frontiers Media, 2023) Şener Raman, Tuğçe; Kuehnert, Mathias; Daikos, Olesya; Scherzer, Tom; Krömmelbein, Catharina; Mayr, Stefan G.; Abel, Bernd; Schulze, Agnes
    Gelatin-based hydrogels are highly desirable biomaterials for use in wound dressing, drug delivery, and extracellular matrix components due to their biocompatibility and biodegradability. However, insufficient and uncontrollable mechanical properties and degradation are the major obstacles to their application in medical materials. Herein, we present a simple but efficient strategy for a novel hydrogel by incorporating the synthetic hydrogel monomer polyethylene glycol diacrylate (PEGDA, offering high mechanical stability) into a biological hydrogel compound (gelatin) to provide stable mechanical properties and biocompatibility at the resulting hybrid hydrogel. In the present work, PEGDA/gelatin hybrid hydrogels were prepared by electron irradiation as a reagent-free crosslinking technology and without using chemical crosslinkers, which carry the risk of releasing toxic byproducts into the material. The viscoelasticity, swelling behavior, thermal stability, and molecular structure of synthesized hybrid hydrogels of different compound ratios and irradiation doses were investigated. Compared with the pure gelatin hydrogel, 21/9 wt./wt. % PEGDA/gelatin hydrogels at 6 kGy exhibited approximately up to 1078% higher storage modulus than a pure gelatin hydrogel, and furthermore, it turned out that the mechanical stability increased with increasing irradiation dose. The chemical structure of the hybrid hydrogels was analyzed by Fourier-transform infrared (FTIR) spectroscopy, and it was confirmed that both compounds, PEGDA and gelatin, were equally present. Scanning electron microscopy images of the samples showed fracture patterns that confirmed the findings of viscoelasticity increasing with gelatin concentration. Infrared microspectroscopy images showed that gelatin and PEGDA polymer fractions were homogeneously mixed and a uniform hybrid material was obtained after electron beam synthesis. In short, this study demonstrates that both the presence of PEGDA improved the material properties of PEGDA/gelatin hybrid hydrogels and the resulting properties are fine-tuned by varying the irradiation dose and PEGDA/gelatin concentration.
  • Item
    Simulation der Strahlhärtung von Stahl mit WIAS-SHarP
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2002) Buchwalder, A.; Hömberg, D.; Jurke, Th.; Spies, H.-J.; Weiss, W.
    Die Software WIAS-SHarP zur Simulation der Oberflaechenhaertung von Stahl mit Laser- und Elektronenstrahl wurde im Rahmen eines zweijaehrigen interdisziplinaeren Forschungsprojektes entwickelt. Das zugrunde liegende mathematische Modell besteht aus einem System gewoehnlicher Differentialgleichungen zur Beschreibung der Gefuegeumwandlungen, gekoppelt mit einer nichtlinearen Waermeleitungsgleichung sowie Komponenten zur Beschreibung der Energieeinkopplung. Um eine moeglichst breite Anwendbarkeit der Software zu gewaehrleisten, wurden werkstoffspezifische Kennwerte zum Umwandlungsverhalten fuer eine grosse Anzahl praxisrelevanter Staehle bereitgestellt. Zur Modellverifikation wurden experimentelle Untersuchungen bei beteiligten Industriepartnern durchgefuehrt und mit den entsprechenden Simulationsrechnungen verglichen.