Search Results

Now showing 1 - 2 of 2
  • Item
    Transparent Power-Generating Windows Based on Solar-Thermal-Electric Conversion
    (Weinheim : Wiley-VCH, 2021) Zhang, Qihao; Huang, Aibin; Ai, Xin; Liao, Jincheng; Song, Qingfeng; Reith, Heiko; Cao, Xun; Fang, Yueping; Schierning, Gabi; Nielsch, Kornelius; Bai, Shengqiang; Chen, Lidong
    Integrating transparent solar-harvesting systems into windows can provide renewable on-site energy supply without altering building aesthetics or imposing further design constraints. Transparent photovoltaics have shown great potential, but the increased transparency comes at the expense of reduced power-conversion efficiency. Here, a new technology that overcomes this limitation by combining solar-thermal-electric conversion with a material's wavelength-selective absorption is presented. A wavelength-selective film consisting of Cs0.33WO3 and resin facilitates high visible-light transmittance (up to 88%) and outstanding ultraviolet and infrared absorbance, thereby converting absorbed light into heat without sacrificing transparency. A prototype that couples the film with thermoelectric power generation produces an extraordinary output voltage of ≈4 V within an area of 0.01 m2 exposed to sunshine. Further optimization design and experimental verification demonstrate high conversion efficiency comparable to state-of-the-art transparent photovoltaics, enriching the library of on-site energy-saving and transparent power generation.
  • Item
    Switchable Cavitation in Silicone Coatings for Energy-Saving Cooling and Heating
    (Weinheim : Wiley-VCH Verlag, 2020) Zhao, H.; Sun, Q.; Zhou, J.; Deng, X.; Cui, J.
    Space cooling and heating currently result in huge amounts of energy consumption and various environmental problems. Herein, a switching strategy is described for efficient energy-saving cooling and heating based on the dynamic cavitation of silicone coatings that can be reversibly and continuously tuned from a highly porous state to a transparent solid. In the porous state, the coatings can achieve efficient solar reflection (93%) and long-wave infrared emission (94%) to induce a subambient temperature drop of about 5 °C in hot weather (≈35 °C). In the transparent solid state, the coatings allow active sunlight permeation (95%) to induce solar heating to raise the ambient temperature from 10 to 28 °C in cold weather. The coatings are made from commercially available, cheap materials via a facile, environmentally friendly method, and are durable, reversible, and patternable. They can be applied immediately to various existed objects including rigid substrates.