Search Results

Now showing 1 - 8 of 8
  • Item
    From biota to chemistry and climate: Towards a comprehensive description of trace gas exchange between the biosphere and atmosphere
    (München : European Geopyhsical Union, 2010) Arneth, A.; Sitch, S.; Bondeau, A.; Butterbach-Bahl, K.; Foster, P.; Gedney, N.; de Noblet-Ducoudré, N.; Prentice, I.C.; Sanderson, M.; Thonicke, K.; Wania, R.; Zaehle, S.
    Exchange of non-CO2 trace gases between the land surface and the atmosphere plays an important role in atmospheric chemistry and climate. Recent studies have highlighted its importance for interpretation of glacial-interglacial ice-core records, the simulation of the pre-industrial and present atmosphere, and the potential for large climate-chemistry and climate-aerosol feedbacks in the coming century. However, spatial and temporal variations in trace gas emissions and the magnitude of future feedbacks are a major source of uncertainty in atmospheric chemistry, air quality and climate science. To reduce such uncertainties Dynamic Global Vegetation Models (DGVMs) are currently being expanded to mechanistically represent processes relevant to non-CO2 trace gas exchange between land biota and the atmosphere. In this paper we present a review of important non-CO2 trace gas emissions, the state-of-the-art in DGVM modelling of processes regulating these emissions, identify key uncertainties for global scale model applications, and discuss a methodology for model integration and evaluation.
  • Item
    Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity
    (München : European Geopyhsical Union, 2017) Ganopolski, Andrey; Brovkin, Victor
    In spite of significant progress in paleoclimate reconstructions and modelling of different aspects of the past glacial cycles, the mechanisms which transform regional and seasonal variations in solar insolation into long-term and global-scale glacial–interglacial cycles are still not fully understood – in particular, in relation to CO2 variability. Here using the Earth system model of intermediate complexity CLIMBER-2 we performed simulations of the co-evolution of climate, ice sheets, and carbon cycle over the last 400 000 years using the orbital forcing as the only external forcing. The model simulates temporal dynamics of CO2, global ice volume, and other climate system characteristics in good agreement with paleoclimate reconstructions. These results provide strong support for the idea that long and strongly asymmetric glacial cycles of the late Quaternary represent a direct but strongly nonlinear response of the Northern Hemisphere ice sheets to orbital forcing. This response is strongly amplified and globalised by the carbon cycle feedbacks. Using simulations performed with the model in different configurations, we also analyse the role of individual processes and sensitivity to the choice of model parameters. While many features of simulated glacial cycles are rather robust, some details of CO2 evolution, especially during glacial terminations, are sensitive to the choice of model parameters. Specifically, we found two major regimes of CO2 changes during terminations: in the first one, when the recovery of the Atlantic meridional overturning circulation (AMOC) occurs only at the end of the termination, a pronounced overshoot in CO2 concentration occurs at the beginning of the interglacial and CO2 remains almost constant during the interglacial or even declines towards the end, resembling Eemian CO2 dynamics. However, if the recovery of the AMOC occurs in the middle of the glacial termination, CO2 concentration continues to rise during the interglacial, similar to the Holocene. We also discuss the potential contribution of the brine rejection mechanism for the CO2 and carbon isotopes in the atmosphere and the ocean during the past glacial termination.
  • Item
    Glacial CO 2 cycle as a succession of key physical and biogeochemical processes
    (München : European Geopyhsical Union, 2012) Brovkin, V.; Ganopolski, A.; Archer, D.; Munhoven, G.
    During glacial-interglacial cycles, atmospheric CO2 concentration varied by about 100 ppmv in amplitude. While testing mechanisms that have led to the low glacial CO2 level could be done in equilibrium model experiments, an ultimate goal is to explain CO2 changes in transient simulations through the complete glacial-interglacial cycle. The computationally efficient Earth System model of intermediate complexity CLIMBER-2 is used to simulate global biogeochemistry over the last glacial cycle (126 kyr). The physical core of the model (atmosphere, ocean, land and ice sheets) is driven by orbital changes and reconstructed radiative forcing from greenhouses gases, ice, and aeolian dust. The carbon cycle model is able to reproduce the main features of the CO2 changes: a 50 ppmv CO2 drop during glacial inception, a minimum concentration at the last glacial maximum 80 ppmv lower than the Holocene value, and an abrupt 60 ppmv CO2 rise during the deglaciation. The model deep ocean δ13C also resembles reconstructions from deep-sea cores. The main drivers of atmospheric CO2 evolve in time: changes in sea surface temperatures and in the volume of bottom water of southern origin control atmospheric CO2 during the glacial inception and deglaciation; changes in carbonate chemistry and marine biology are dominant during the first and second parts of the glacial cycle, respectively. These feedback mechanisms could also significantly impact the ultimate climate response to the anthropogenic perturbation.
  • Item
    Age–depth model of the past 630 kyr for Lake Ohrid (FYROM/Albania) based on cyclostratigraphic analysis of downhole gamma ray data
    (Katlenburg-Lindau : European Geosciences Union, 2015) Baumgarten, H.; Wonik, T.; Tanner, D.C.; Francke, A.; Wagner, B.; Zanchetta, G.; Sulpizio, R.; Giaccio, B.; Nomade, S.
    Gamma ray (GR) fluctuations and potassium (K) values from downhole logging data obtained in the sediments of Lake Ohrid from 0 to 240 m below lake floor (b.l.f). correlate with fluctuations in δ18O values from the global benthic isotope stack LR04 (Lisiecki and Raymo, 2005). GR and K values are considered a reliable proxy to depict glacial-interglacial cycles, with high clastic input during cold and/or drier periods and high carbonate precipitation during warm and/or humid periods at Lake Ohrid. Spectral analysis was applied to investigate the climate signal and evolution over the length of the borehole. Linking downhole logging data with orbital cycles was used to estimate sedimentation rates and the effect of compaction was compensated for. Sedimentation rates increase on average by 14 % after decompaction of the sediment layers and the mean sedimentation rates shift from 45 cm kyr-1 between 0 and 110 m to 30 cm kyr-1 from 110 to 240 m b.l.f. Tuning of minima and maxima of gamma ray and potassium values versus LR04 extrema, in combination with eight independent tephrostratigraphical tie points, allows establishing of a robust age model for the downhole logging data over the past 630 kyr. © Author(s) 2015.
  • Item
    Northern Mediterranean climate since the Middle Pleistocene: a 637 ka stable isotope record from Lake Ohrid (Albania/Macedonia)
    (Katlenburg-Lindau : European Geosciences Union, 2016) Lacey, Jack H.; Leng, Melanie J.; Francke, Alexander; Sloane, Hilary J.; Milodowski, Antoni; Vogel, Hendrik; Baumgarten, Henrike; Zanchetta, Giovanni; Wagner, Bernd
    Lake Ohrid (Macedonia/Albania) is an ancient lake with unique biodiversity and a site of global significance for investigating the influence of climate, geological, and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data from carbonate over the upper 243 m of a composite core profile recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. The investigated sediment succession covers the past ca. 637 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the total inorganic carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial-interglacial cycle. Sediments corresponding to warmer periods contain abundant endogenic calcite; however, an overall low TIC content in glacial sediments is punctuated by discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to palaeoenvironmental change on orbital and millennial timescales. We also measured isotope ratios from authigenic siderite (δ18Os and δ13Cs) and, with the oxygen isotope composition of calcite and siderite, reconstruct δ18O of lake water (δ18Olw) over the last 637 ka. Interglacials have higher δ18Olw values when compared to glacial periods most likely due to changes in evaporation, summer temperature, the proportion of winter precipitation (snowfall), and inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability from marine isotope stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial. Climate conditions became progressively wetter during MIS 11 and MIS 9. Interglacial periods after MIS 9 are characterised by increasingly evaporated and drier conditions through MIS 7, MIS 5, and the Holocene. Our results provide new evidence for long-term climate change in the northern Mediterranean region, which will form the basis to better understand the influence of major environmental events on biological evolution within Lake Ohrid. © Author(s) 2016.
  • Item
    Mediterranean climate since the Middle Pleistocene: A 640 ka stable isotope record from Lake Ohrid (Albania/Macedonia)
    (Katlenburg-Lindau : European Geosciences Union, 2015) Lacey, J.H.; Leng, M.J.; Francke, A.; Sloane, H.J.; Milodowski, A.; Vogel, H.; Baumgarten, H.; Wagner, B.
    Lake Ohrid (Macedonia/Albania) is an ancient lake with a unique biodiversity and a site of global significance for investigating the influence of climate, geological and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data on carbonate from the upper ca. 248 m of sediment cores recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project, covering the past 640 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the Total Inorganic Carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial-interglacial cycle, comprising abundant endogenic calcite through interglacials and being almost absent in glacials, apart from discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite(δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to hydroclimate fluctuations on orbital and millennial timescales. We also measured isotopes on authigenic siderite (δ18Os and δ13Cs) and, with the δ18OCc and δ18Os, reconstruct δ18O of lakewater (δ18Olw) through the 640 ka. Overall, glacials have lower δ18Olw when compared to interglacials, most likely due to cooler summer temperatures, a higher proportion of winter precipitation (snowfall), and a reduced inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability through Marine Isotope Stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial, and was isotopically freshest during MIS 9. After MIS 9, the variability between glacial and interglacial δ18Olw is enhanced and the lake became increasingly evaporated through to present day with MIS 5 having the highest average δ18Olw. Our results provide new evidence for long-term climate change in the northern Mediterranean region, which will form the basis to better understand the influence of major environmental events on biological evolution within the lake.
  • Item
    The environmental and evolutionary history of Lake Ohrid (FYROM/Albania): interim results from the SCOPSCO deep drilling project
    (Katlenburg-Lindau : European Geosciences Union, 2017) Wagner, Bernd; Wilke, Thomas; Francke, Alexander; Albrecht, Christian; Baumgarten, Henrike; Bertini, Adele; Combourieu-Nebout, Nathalie; Cvetkoska, Aleksandra; D'Addabbo, Michele; Donders, Timme H.; Föller, Kirstin; Giaccio, Biagio; Grazhdani, Andon; Hauffe, Torsten; Holtvoeth, Jens; Joannin, Sebastien; Jovanovska, Elena; Just, Janna; Kouli, Katerina; Koutsodendris, Andreas; Krastel, Sebastian; Lacey, Jack H.; Leicher, Niklas; Leng, Melanie J.; Levkov, Zlatko; Lindhorst, Katja; Masi, Alessia; Mercuri, Anna M.; Nomade, Sebastien; Nowaczyk, Norbert; Panagiotopoulos, Konstantinos; Peyron, Odile; Reed, Jane M.; Regattieri, Eleonora; Sadori, Laura; Sagnotti, Leonardo; Stelbrink, Björn; Sulpizio, Roberto; Tofilovska, Slavica; Torri, Paola; Vogel, Hendrik; Wagner, Thomas; Wagner-Cremer, Friederike; Wolff, George A.; Wonik, Thomas; Zanchetta, Giovanni; Zhang, Xiaosen S.
    This study reviews and synthesises existing information generated within the SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) deep drilling project. The four main aims of the project are to infer (i) the age and origin of Lake Ohrid (Former Yugoslav Republic of Macedonia/Republic of Albania), (ii) its regional seismotectonic history, (iii) volcanic activity and climate change in the central northern Mediterranean region, and (iv) the influence of major geological events on the evolution of its endemic species. The Ohrid basin formed by transtension during the Miocene, opened during the Pliocene and Pleistocene, and the lake established de novo in the still relatively narrow valley between 1.9 and 1.3 Ma. The lake history is recorded in a 584 m long sediment sequence, which was recovered within the framework of the International Continental Scientific Drilling Program (ICDP) from the central part (DEEP site) of the lake in spring 2013. To date, 54 tephra and cryptotephra horizons have been found in the upper 460 m of this sequence. Tephrochronology and tuning biogeochemical proxy data to orbital parameters revealed that the upper 247.8 m represent the last 637 kyr. The multi-proxy data set covering these 637 kyr indicates long-term variability. Some proxies show a change from generally cooler and wetter to drier and warmer glacial and interglacial periods around 300 ka. Short-term environmental change caused, for example, by tephra deposition or the climatic impact of millennial-scale Dansgaard-Oeschger and Heinrich events are superimposed on the long-term trends. Evolutionary studies on the extant fauna indicate that Lake Ohrid was not a refugial area for regional freshwater animals. This differs from the surrounding catchment, where the mountainous setting with relatively high water availability provided a refuge for temperate and montane trees during the relatively cold and dry glacial periods. Although Lake Ohrid experienced significant environmental change over the last 637 kyr, preliminary molecular data from extant microgastropod species do not indicate significant changes in diversification rate during this period. The reasons for this constant rate remain largely unknown, but a possible lack of environmentally induced extinction events in Lake Ohrid and/or the high resilience of the ecosystems may have played a role. © Author(s) 2017.
  • Item
    Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 2: Parameter ensemble analysis
    (Katlenburg-Lindau : Copernicus, 2020) Albrecht, Torsten; Winkelmann, Ricarda; Levermann, Anders
    The Parallel Ice Sheet Model (PISM) is applied to the Antarctic Ice Sheet over the last two glacial cycles (≈210 000 years) with a resolution of 16 km. An ensemble of 256 model runs is analyzed in which four relevant model parameters have been systematically varied using full-factorial parameter sampling. Parameters and plausible parameter ranges have been identified in a companion paper (Albrecht et al., 2020) and are associated with ice dynamics, climatic forcing, basal sliding and bed deformation and represent distinct classes of model uncertainties. The model is scored against both modern and geologic data, including reconstructed grounding-line locations, elevation–age data, ice thickness, surface velocities and uplift rates. An aggregated score is computed for each ensemble member that measures the overall model–data misfit, including measurement uncertainty in terms of a Gaussian error model (Briggs and Tarasov, 2013). The statistical method used to analyze the ensemble simulation results follows closely the simple averaging method described in Pollard et al. (2016). This analysis reveals clusters of best-fit parameter combinations, and hence a likely range of relevant model and boundary parameters, rather than individual best-fit parameters. The ensemble of reconstructed histories of Antarctic Ice Sheet volumes provides a score-weighted likely range of sea-level contributions since the Last Glacial Maximum (LGM) of 9.4±4.1 m (or 6.5±2.0×106km3 ), which is at the upper range of most previous studies. The last deglaciation occurs in all ensemble simulations after around 12 000 years before present and hence after the meltwater pulse 1A (MWP1a). Our ensemble analysis also provides an estimate of parametric uncertainty bounds for the present-day state that can be used for PISM projections of future sea-level contributions from the Antarctic Ice Sheet.