Search Results

Now showing 1 - 3 of 3
  • Item
    Stellar magnetic activity and variability of oscillation parameters: An investigation of 24 solar-like stars observed by Kepler
    (Les Ulis : EDP Sciences, 2017) Kiefer, René; Schad, Ariane; Davies, Guy; Roth, Markus
    Context. The Sun and solar-like stars undergo activity cycles for which the underlying mechanisms are not well understood. The oscillations of the Sun are known to vary with its activity cycle and these changes provide diagnostics on the conditions below the photosphere. Kepler has detected solar-like oscillations in hundreds of stars but as of yet, no widespread detection of signatures of magnetic activity cycles in the oscillation parameters of these stars have been reported. Aims. We analysed the photometric short cadence Kepler time series of a set of 24 solar-like stars, which were observed for at least 960 d each, with the aim to find signatures of stellar magnetic activity in the oscillation parameters. Methods. We analyse the temporal evolution of oscillation parameters by measuring mode frequency shifts, changes in the height of the p-mode envelope, as well as granulation timescales. Results. For 23 of the 24 investigated stars, we find significant frequency shifts in time. We present evidence for magnetic activity in six of these stars. We find that the amplitude of the frequency shifts decreases with stellar age and rotation period. For KIC 8006161 (the most prominent example), we find that frequency shifts are smallest for the lowest and largest for the highest p-mode frequencies, as they are for the Sun. Conclusions. These findings show that magnetic activity can be routinely observed in the oscillation parameters for solar-like stars, which opens up the possibility of placing the solar activity cycle in the context of other stars by asteroseismology.
  • Item
    RefPlanets: Search for reflected light from extra-solar planets with SPHERE/ZIMPOL
    (Les Ulis : EDP Sciences , 2020) Hunziker, S.; Schmid, H.M.; Mouillet, D.; Milli, J.; Zurlo, A.; Delorme, P.; Abe, L.; Avenhaus, H.; Baruffolo, A.; Bazzon, A.; Boccaletti, A.; Baudoz, P.; Beuzit, J.L.; Carbillet, M.; Chauvin, G.; Claudi, R.; Costille, A.; Daban, J.B.; Desidera, S.; Dohlen, K.; Dominik, C.; Downing, M.; Engler, N.; Feldt, M.; Fusco, T.; Ginski, C.; Gisler, D.; Girard, J.H.; Gratton, R.; Henning, Th.; Hubin, N.; Kasper, M.; Keller, C.U.; Langlois, M.; Lagadec, E.; Martinez, P.; Maire, A.L.; Menard, F.; Meyer, M.R.; Pavlov, A.; Pragt, J.; Puget, P.; Quanz, S.P.; Rickman, E.; Roelfsema, R.; Salasnich, B.; Sauvage, J.F.; Siebenmorgen, R.; Sissa, E.; Snik, F.; Suarez, M.; Szulagyi, J.; Thalmann, Ch.; Turatto, M.; Udry, S.; van Holstein, R.G.; Vigan, A.; Wildi, F.
    RefPlanets is a guaranteed time observation (GTO) programme that uses the Zurich IMaging POLarimeter (ZIMPOL) of SPHERE/VLT for a blind search for exoplanets in wavelengths from 600-900 nm. The goals of this study are the characterization of the unprecedented high polarimetic contrast and polarimetric precision capabilities of ZIMPOL for bright targets, the search for polarized reflected light around some of the closest bright stars to the Sun and potentially the direct detection of an evolved cold exoplanet for the first time. For our observations of Alpha Cen A and B, Sirius A, Altair, Eps Eri and Tau Ceti we used the polarimetric differential imaging (PDI) mode of ZIMPOL which removes the speckle noise down to the photon noise limit for angular separations >0.6". We describe some of the instrumental effects that dominate the noise for smaller separations and explain how to remove these additional noise effects in post-processing. We then combine PDI with angular differential imaging (ADI) as a final layer of post-processing to further improve the contrast limits of our data at these separations. For good observing conditions we achieve polarimetric contrast limits of 15.0-16.3 mag at the effective inner working angle of about 0.13", 16.3-18.3 mag at 0.5" and 18.8-20.4 mag at 1.5". The contrast limits closer in (<0.6") depend significantly on the observing conditions, while in the photon noise dominated regime (>0.6"), the limits mainly depend on the brightness of the star and the total integration time. We compare our results with contrast limits from other surveys and review the exoplanet detection limits obtained with different detection methods. For all our targets we achieve unprecedented contrast limits. Despite the high polarimetric contrasts we are not able to find any additional companions or extended polarized light sources in the data that has been taken so far.
  • Item
    Verification of the helioseismic Fourier-Legendre analysis for meridional flow measurements
    (Les Ulis : EDP Sciences, 2016) Roth, M.; Doerr, H.-P.; Hartlep, T.
    Context. Measuring the Sun’s internal meridional flow is one of the key issues of helioseismology. Using the Fourier-Legendre analysis is a technique for addressing this problem. Aims. We validate this technique with the help of artificial helioseismic data. Methods. The analysed data set was obtained by numerically simulating the effect of the meridional flow on the seismic wave field in the full volume of the Sun. In this way, a 51.2-h long time series was generated. The resulting surface velocity field is then analyzed in various settings: Two 360° × 90° halfspheres, two 120° × 60° patches on the front and farside of the Sun (North and South, respectively) and two 120° × 60° patches on the northern and southern frontside only. We compare two possible measurement setups: observations from Earth and from an additional spacecraft on the solar farside, and observations from Earth only, in which case the full information of the global solar oscillation wave field was available. Results. We find that, with decreasing observing area, the accessible depth range decreases: the 360° × 90° view allows us to probe the meridional flow almost to the bottom of the convection zone, while the 120° × 60° view means only the outer layers can be probed. Conclusions. These results confirm the validity of the Fourier-Legendre analysis technique for helioseismology of the meridional flow. Furthermore these flows are of special interest for missions like Solar Orbiter that promises to complement standard helioseismic measurements from the solar nearside with farside observations.