Search Results

Now showing 1 - 6 of 6
  • Item
    Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol
    (Washington, DC : ACS Publ., 2019) Bianchi, Federico; Kurtén, Theo; Riva, Matthieu; Mohr, Claudia; Rissanen, Matti P.; Roldin, Pontus; Berndt, Torsten; Crounse, John D.; Wennberg, Paul O.; Mentel, Thomas F.; Wildt, Jürgen; Junninen, Heikki; Jokinen, Tuija; Kulmala, Markku; Worsnop, Douglas R.; Thornton, Joel A.; Donahue, Neil; Kjaergaard, Henrik G.; Ehn, Mikael
    Highly oxygenated organic molecules (HOM) are formed in the atmosphere via autoxidation involving peroxy radicals arising from volatile organic compounds (VOC). HOM condense on pre-existing particles and can be involved in new particle formation. HOM thus contribute to the formation of secondary organic aerosol (SOA), a significant and ubiquitous component of atmospheric aerosol known to affect the Earth's radiation balance. HOM were discovered only very recently, but the interest in these compounds has grown rapidly. In this Review, we define HOM and describe the currently available techniques for their identification/quantification, followed by a summary of the current knowledge on their formation mechanisms and physicochemical properties. A main aim is to provide a common frame for the currently quite fragmented literature on HOM studies. Finally, we highlight the existing gaps in our understanding and suggest directions for future HOM research. © 2019 American Chemical Society.
  • Item
    Redox Stimulation of Human THP-1 Monocytes in Response to Cold Physical Plasma
    (Austin, Tex. : Landes Bioscience, 2015) Bekeschus, Sander; Schmidt, Anke; Bethge, Lydia; Masur, Kai; von Woedtke, Thomas; Hasse, Sybille; Wende, Kristian
    In plasma medicine, cold physical plasma delivers a delicate mixture of reactive components to cells and tissues. Recent studies suggested a beneficial role of cold plasma in wound healing. Yet, the biological processes related to the redox modulation via plasma are not fully understood. We here used the monocytic cell line THP-1 as a model to test their response to cold plasma in vitro. Intriguingly, short term plasma treatment stimulated cell growth. Longer exposure only modestly compromised cell viability but apparently supported the growth of cells that were enlarged in size and that showed enhanced metabolic activity. A significantly increased mitochondrial content in plasma treated cells supported this notion. On THP-1 cell proteome level, we identified an increase of protein translation with key regulatory proteins being involved in redox regulation (hypoxia inducible factor 2α), differentiation (retinoic acid signaling and interferon inducible factors), and cell growth (Yin Yang 1). Regulation of inflammation is a key element in many chronic diseases, and we found a significantly increased expression of the anti-inflammatory heme oxygenase 1 (HMOX1) and of the neutrophil attractant chemokine interleukin-8 (IL-8). Together, these results foster the view that cold physical plasma modulates the redox balance and inflammatory processes in wound related cells.
  • Item
    Air-stable redox-active nanomagnets with lanthanide spins radical-bridged by a metal–metal bond
    (London : Nature Publishing Group, 2019) Liu, F.; Velkos, G.; Krylov, D.S.; Spree, L.; Zalibera, M.; Ray, R.; Samoylova, N.A.; Chen, C.-H.; Rosenkranz, M.; Schiemenz, S.; Ziegs, F.; Nenkov, K.; Kostanyan, A.; Greber, T.; Wolter, A.U.B.; Richter, M.; Büchner, B.; Avdoshenko, S.M.; Popov, A.A.
    Engineering intramolecular exchange interactions between magnetic metal atoms is a ubiquitous strategy for designing molecular magnets. For lanthanides, the localized nature of 4f electrons usually results in weak exchange coupling. Mediating magnetic interactions between lanthanide ions via radical bridges is a fruitful strategy towards stronger coupling. In this work we explore the limiting case when the role of a radical bridge is played by a single unpaired electron. We synthesize an array of air-stable Ln 2 @C 80 (CH 2 Ph) dimetallofullerenes (Ln 2 = Y 2 , Gd 2 , Tb 2 , Dy 2 , Ho 2 , Er 2 , TbY, TbGd) featuring a covalent lanthanide-lanthanide bond. The lanthanide spins are glued together by very strong exchange interactions between 4f moments and a single electron residing on the metal–metal bonding orbital. Tb 2 @C 80 (CH 2 Ph) shows a gigantic coercivity of 8.2 Tesla at 5 K and a high 100-s blocking temperature of magnetization of 25.2 K. The Ln-Ln bonding orbital in Ln 2 @C 80 (CH 2 Ph) is redox active, enabling electrochemical tuning of the magnetism.
  • Item
    Periodic Exposure of Keratinocytes to Cold Physical Plasma: An In Vitro Model for Redox-Related Diseases of the Skin
    (London: Hindawi, 2016) Schmidt, Anke; von Woedtke, Thomas; Bekeschus, Sander
    Oxidative stress illustrates an imbalance between radical formation and removal. Frequent redox stress is critically involved in many human pathologies including cancer, psoriasis, and chronic wounds. However, reactive species pursue a dual role being involved in signaling on the one hand and oxidative damage on the other. Using a HaCaT keratinocyte cell culture model, we investigated redox regulation and inflammation to periodic, low-dose oxidative stress after two, six, eight, ten, and twelve weeks. Chronic redox stress was generated by recurrent incubation with cold physical plasma-treated cell culture medium. Using transcriptome microarray technology, we identified both acute ROS-stress responses as well as numerous adaptions after several weeks of redox challenge. We determined a differential expression (2-fold, FDR < 0.01, p < 0.05) of 260 genes that function in inflammation and redox homeostasis, such as cytokines (e.g., IL-6, IL-8, and IL-10), growth factors (e.g., CSF2, FGF, and IGF-2), and antioxidant enzymes (e.g., HMOX, NQO1, GPX, and PRDX). Apoptotic signaling was affected rather modestly, especially in p53 downstream targets (e.g., BCL2, BBC3, and GADD45). Strikingly, the cell-protective heat shock protein HSP27 was strongly upregulated (p < 0.001). These results suggested cellular adaptions to frequent redox stress and may help to better understand the inflammatory responses in redox-related diseases.
  • Item
    Elucidation of Plasma-induced Chemical Modifications on Glutathione and Glutathione Disulphide
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2017-10-23) Klinkhammer, Christina; Verlackt, Christof; Śmiłowicz, Dariusz; Kogelheide, Friederike; Bogaerts, Annemie; Metzler-Nolte, Nils; Stapelmann, Katharina; Havenith, Martina; Lackmann, Jan-Wilm
    Cold atmospheric pressure plasmas are gaining increased interest in the medical sector and clinical trials to treat skin diseases are underway. Plasmas are capable of producing several reactive oxygen and nitrogen species (RONS). However, there are open questions how plasma-generated RONS interact on a molecular level in a biological environment, e.g. cells or cell components. The redox pair glutathione (GSH) and glutathione disulphide (GSSG) forms the most important redox buffer in organisms responsible for detoxification of intracellular reactive species. We apply Raman spectroscopy, mass spectrometry, and molecular dynamics simulations to identify the time-dependent chemical modifications on GSH and GSSG that are caused by dielectric barrier discharge under ambient conditions. We find GSSG, S-oxidised glutathione species, and S-nitrosoglutathione as oxidation products with the latter two being the final products, while glutathione sulphenic acid, glutathione sulphinic acid, and GSSG are rather reaction intermediates. Experiments using stabilized pH conditions revealed the same main oxidation products as were found in unbuffered solution, indicating that the dominant oxidative or nitrosative reactions are not influenced by acidic pH. For more complex systems these results indicate that too long treatment times can cause difficult-to-handle modifications to the cellular redox buffer which can impair proper cellular function.
  • Item
    NERNST: a genetically-encoded ratiometric non-destructive sensing tool to estimate NADP(H) redox status in bacterial, plant and animal systems
    ([London] : Springer Nature, 2023) Molinari, Pamela E.; Krapp, Adriana R.; Weiner, Andrea; Beyer, Hannes M.; Kondadi, Arun Kumar; Blomeier, Tim; López, Melina; Bustos-Sanmamed, Pilar; Tevere, Evelyn; Weber, Wilfried; Reichert, Andreas S.; Calcaterra, Nora B.; Beller, Mathias; Carrillo, Nestor; Zurbriggen, Matias D.
    NADP(H) is a central metabolic hub providing reducing equivalents to multiple biosynthetic, regulatory and antioxidative pathways in all living organisms. While biosensors are available to determine NADP+ or NADPH levels in vivo, no probe exists to estimate the NADP(H) redox status, a determinant of the cell energy availability. We describe herein the design and characterization of a genetically-encoded ratiometric biosensor, termed NERNST, able to interact with NADP(H) and estimate E NADP(H). NERNST consists of a redox-sensitive green fluorescent protein (roGFP2) fused to an NADPH-thioredoxin reductase C module which selectively monitors NADP(H) redox states via oxido-reduction of the roGFP2 moiety. NERNST is functional in bacterial, plant and animal cells, and organelles such as chloroplasts and mitochondria. Using NERNST, we monitor NADP(H) dynamics during bacterial growth, environmental stresses in plants, metabolic challenges to mammalian cells, and wounding in zebrafish. NERNST estimates the NADP(H) redox poise in living organisms, with various potential applications in biochemical, biotechnological and biomedical research.