Search Results

Now showing 1 - 10 of 19
  • Item
    The role of bioenergy in enhancing energy, food and ecosystem sustainability based on societal perceptions and preferences in Asia
    (Basel : MDPI, 2016) Acosta, Lilibeth A.; Magcale-Macandog, Damasa B.; Kavi Kumar, K.S.; Cui, Xuefeng; Eugenio, Elena A.; Macandog, Paula Beatrice M.; Salvacion, Arnold R.; Eugenio, Jemimah Mae A.
    This paper discussed the analysis of the survey on sustainability of bioenergy conducted in the Philippines, India and China. It acquired general perceptions of the people by asking them (a) specific questions about their level of familiarity with bioenergy; (b) relationship of their work to bioenergy; and (c) their opinion on contribution of various feedstock on the economy and impact of bioenergy production on food security. In addition to these questions, we estimated preference weights of various feedstock based on the conjoint choices on bioenergy’s contribution to social stability, social welfare and ecological balance. The estimates revealed significant trade-offs not only among these three dimensions of sustainability but also the relative importance of energy security, food security and ecosystem capacity to other economic, social and environmental objectives. The types of first generation feedstock that are currently used for biofuel production in the respective countries and those that offer alternative household use are perceived as important to the economy and preferred bioenergy feedstock. Based on the results of the study, the preferred role of bioenergy for sustainable development reflects the social and economic concerns in the respective Asian countries, e.g., energy security in China, food security in India, and ecosystem degradation in the Philippines.
  • Item
    Challenges and opportunities in mapping land use intensity globally
    (Amsterdam : Elsevier, 2013) Kuemmerle, Tobias; Erb, Karlheinz; Meyfroidt, Patrick; Müller, Daniel; Verburg, Peter H.; Estel, Stephan; Haberl, Helmut; Hostert, Patrick; Jepsen, Martin R.; Kastner, Thomas; Levers, Christian; Lindner, Marcus; Plutzar, Christoph; Verkerk, Pieter Johannes; van der Zanden, Emma H.; Reenberg, Anette
    Future increases in land-based production will need to focus more on sustainably intensifying existing production systems. Unfortunately, our understanding of the global patterns of land use intensity is weak, partly because land use intensity is a complex, multidimensional term, and partly because we lack appropriate datasets to assess land use intensity across broad geographic extents. Here, we review the state of the art regarding approaches for mapping land use intensity and provide a comprehensive overview of available global-scale datasets on land use intensity. We also outline major challenges and opportunities for mapping land use intensity for cropland, grazing, and forestry systems, and identify key issues for future research.
  • Item
    The global technical potential of bio-energy in 2050 considering sustainability constraints
    (Amsterdam : Elsevier, 2010) Haberl, H.; Beringer, T.; Bhattacharya, S.C.; Erb, K.-H.; Hoogwijk, M.
    Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets ('technical potential'). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160-270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization ('cascade utilization') of biomass flows. © 2010 Elsevier B.V.
  • Item
    Assessment and Public Reporting of Geothermal Resources in Germany: Review and Outlook
    (Basel : MDPI, 2018) Agemar, Thorsten; Weber, Josef; Moeck, Inga S.
    Any geothermal resource assessment requires consistent and widely accepted terminology, methods, and reporting schemes that facilitate the comparison of geothermal resource estimates. This paper reviews common resource assessment methods, as well as reporting codes and terminology. Based on a rigorous analysis of the portrayed concepts and methods, it discusses the appropriateness of the existing reporting codes for sustainable utilization of geothermal resources in Germany. Since the last quantitative geothermal resource assessment in Germany was done 15 years ago, a revised report is overdue. Unlike fossil energy commodities, geothermal energy replenishes naturally and heat recuperation increases in created heat sinks. This replenishment process offers the opportunity for sustainable reservoir management in the case of moderate production rates or cyclic operation. Existing reporting codes, however, regard geothermal resources in a similar way to fossil resources or focus too much on field development rather than on the whole assessment process. In order to emphasize the renewability of geothermal energy, we propose the reporting of geothermal capacities (per doublet or per km2) instead of recoverable heat energy which depends very much on project lifetime and other factors. As a first step, a new classification scheme for geothermal resources and reserves is outlined.
  • Item
    Solar spectral conversion for improving the photosynthetic activity in algae reactors
    (London : Nature Publishing Group, 2013) Wondraczek, L.; Batentschuk, M.; Schmidt, M.A.; Borchardt, R.; Scheiner, S.; Seemann, B.; Schweizer, P.; Brabec, C.J.
    Sustainable biomass production is expected to be one of the major supporting pillars for future energy supply, as well as for renewable material provision. Algal beds represent an exciting resource for biomass/biofuel, fine chemicals and CO2 storage. Similar to other solar energy harvesting techniques, the efficiency of algal photosynthesis depends on the spectral overlap between solar irradiation and chloroplast absorption. Here we demonstrate that spectral conversion can be employed to significantly improve biomass growth and oxygen production rate in closed-cycle algae reactors. For this purpose, we adapt a photoluminescent phosphor of the type Ca 0.59Sr0.40Eu0.01S, which enables efficient conversion of the green part of the incoming spectrum into red light to better match the Qy peak of chlorophyll b. Integration of a Ca 0.59Sr0.40Eu0.01S backlight converter into a flat panel algae reactor filled with Haematococcus pluvialis as a model species results in significantly increased photosynthetic activity and algae reproduction rate.
  • Item
    Archetype analysis in sustainability research: Methodological portfolio and analytical frontiers
    (Stockholm : Resilience Alliance, 2019) Sietz, D.; Frey, U.; Roggero, M.; Gong, Y.; Magliocca, N.; Tan, R.; Janssen, P.; Václavík, T.
    In sustainability research, archetype analysis reveals patterns of factors and processes that repeatedly shape social-ecological systems. These patterns help improve our understanding of global concerns, including vulnerability, land management, food security, and governance. During the last decade, the portfolio of methods used to investigate archetypes has been growing rapidly. However, these methods differ widely in their epistemological and normative underpinnings, data requirements, and suitability to address particular research purposes. Therefore, guidance is needed for systematically choosing methods in archetype analysis. We synthesize strengths and weaknesses of key methods used to identify archetypes. Demonstrating that there is no “one-size-fits-all” approach, we discuss advantages and shortcomings of a range of methods for archetype analysis in sustainability research along gradients that capture the treatment of causality, normativity, spatial variations, and temporal dynamics. Based on this discussion, we highlight seven analytical frontiers that bear particular potential for tackling methodological limitations. As a milestone in archetype analysis, our synthesis supports researchers in reflecting on methodological implications, including opportunities and limitations related to causality, normativity, space, and time considerations in view of specific purposes and research questions. This enables innovative research designs in future archetype analysis, thereby contributing to the advancement of sustainability research and decision-making.
  • Item
    Powers of 10: seeking ‘sweet spots’ for rapid climate and sustainability actions between individual and global scales
    (Bristol : IOP Publ., 2020) Bhowmik, Avit K.; McCaffrey, Mark S.; Ruskey, Abigail M.; Frischmann, Chad; Gaffney, Owen
    Achieving the goals of the Paris Agreement and related sustainability initiatives will require halving of global greenhouse gas emissions each decade from now on through to 2050, when net zero emissions should be achieved. To reach such significant reductions requires a rapid and strategic scaling of existing and emerging technologies and practices, coupled with economic and social transformations and novel governance solutions. Here we present a new ‘Powers of 10’ (P10) logarithmic framework and demonstrate its potential as a practical tool for decision makers and change agents at multiple scales to inform and catalyze engagement and actions, complementing and adding nuance to existing frameworks. P10 assists in identifying the suitable cohorts and cohort ranges for rapidly deploying climate and sustainability actions between a single individual and the globally projected ∼ 10 billion persons by 2050. Applying a robust dataset of climate solutions from Project Drawdown’s Plausible scenario that could cumulatively reduce greenhouse gas emissions by 1051 gigatons (Gt) against a reference scenario (2190 Gt) between 2020 and 2050, we seek to identify a ‘sweet spot’ where these climate and sustainability actions are suitably scaled. We suggest that prioritizing the analyzed climate actions between community and urban scales, where global and local converge, can help catalyze and enhance individual, household and local practices, and support national and international policies and finances for rapid sustainability transformations.
  • Item
    Productivity ranges of sustainable biomass potentials from non-agricultural land
    (Bristol : IOP Publishing, 2016) Schueler, Vivian; Fuss, Sabine; Steckel, Jan Christoph; Weddige, Ulf; Beringer, Tim
    Land is under pressure from a number of demands, including the need for increased supplies of bioenergy. While bioenergy is an important ingredient in many pathways compatible with reaching the 2 °C target, areas where cultivation of the biomass feedstock would be most productive appear to co-host other important ecosystems services. We categorize global geo-data on land availability into productivity deciles, and provide a geographically explicit assessment of potentials that are concurrent with EU sustainability criteria. The deciles unambiguously classify the global productivity range of potential land currently not in agricultural production for biomass cultivation. Results show that 53 exajoule (EJ) sustainable biomass potential are available from 167 million hectares (Mha) with a productivity above 10 tons of dry matter per hectare and year (tD Mha−1 a−1), while additional 33 EJ are available on 264 Mha with yields between 4 and 10 tD M ha−1 a−1: some regions lose less of their highly productive potentials to sustainability concerns than others and regional contributions to bioenergy potentials shift when less productive land is considered. Challenges to limit developments to the exploitation of sustainable potentials arise in Latin America, Africa and Developing Asia, while new opportunities emerge for Transition Economies and OECD countries to cultivate marginal land.
  • Item
    Between Scylla and Charybdis: Delayed mitigation narrows the passage between large-scale CDR and high costs
    (Bristol : IOP Publishing, 2018) Strefler, Jessica; Bauer, Nico; Kriegler, Elmar; Popp, Alexander; Giannousakis, Anastasis; Edenhofer, Ottmar
    There are major concerns about the sustainability of large-scale deployment of carbon dioxide removal (CDR) technologies. It is therefore an urgent question to what extent CDR will be needed to implement the long term ambition of the Paris Agreement. Here we show that ambitious near term mitigation significantly decreases CDR requirements to keep the Paris climate targets within reach. Following the nationally determined contributions (NDCs) until 2030 makes 2 °C unachievable without CDR. Reducing 2030 emissions by 20% below NDC levels alleviates the trade-off between high transitional challenges and high CDR deployment. Nevertheless, transitional challenges increase significantly if CDR is constrained to less than 5 Gt CO2 a−1 in any year. At least 8 Gt CO2 a−1 CDR are necessary in the long term to achieve 1.5 °C and more than 15 Gt CO2 a−1 to keep transitional challenges in bounds.
  • Item
    The meso scale as a frontier in interdisciplinary modeling of sustainability from local to global scales
    (Bristol : IOP Publ., 2023) Johnson, Justin Andrew; Brown, Molly E.; Corong, Erwin; Dietrich, Jan Philipp; C. Henry, Roslyn; Jeetze, Patrick José von; Leclère, David; Popp, Alexander; Thakrar, Sumil K.; Williams, David R.
    Achieving sustainable development requires understanding how human behavior and the environment interact across spatial scales. In particular, knowing how to manage tradeoffs between the environment and the economy, or between one spatial scale and another, necessitates a modeling approach that allows these different components to interact. Existing integrated local and global analyses provide key insights, but often fail to capture ‘meso-scale’ phenomena that operate at scales between the local and the global, leading to erroneous predictions and a constrained scope of analysis. Meso-scale phenomena are difficult to model because of their complexity and computational challenges, where adding additional scales can increase model run-time exponentially. These additions, however, are necessary to make models that include sufficient detail for policy-makers to assess tradeoffs. Here, we synthesize research that explicitly includes meso-scale phenomena and assess where further efforts might be fruitful in improving our predictions and expanding the scope of questions that sustainability science can answer. We emphasize five categories of models relevant to sustainability science, including biophysical models, integrated assessment models, land-use change models, earth-economy models and spatial downscaling models. We outline the technical and methodological challenges present in these areas of research and discuss seven directions for future research that will improve coverage of meso-scale effects. Additionally, we provide a specific worked example that shows the challenges present, and possible solutions, for modeling meso-scale phenomena in integrated earth-economy models.