Search Results

Now showing 1 - 2 of 2
  • Item
    A Recommender System For Open Educational Videos Based On Skill Requirements
    (Ithaca, NY : Cornell University, 2020) Tavakoli, Mohammadreza; Hakimov, Sherzod; Ewerth, Ralph; Kismihók, Gábor
    In this paper, we suggest a novel method to help learners find relevant open educational videos to master skills demanded on the labour market. We have built a prototype, which 1) applies text classification and text mining methods on job vacancy announcements to match jobs and their required skills; 2) predicts the quality of videos; and 3) creates an open educational video recommender system to suggest personalized learning content to learners. For the first evaluation of this prototype we focused on the area of data science related jobs. Our prototype was evaluated by in-depth, semi-structured interviews. 15 subject matter experts provided feedback to assess how our recommender prototype performs in terms of its objectives, logic, and contribution to learning. More than 250 videos were recommended, and 82.8% of these recommendations were treated as useful by the interviewees. Moreover, interviews revealed that our personalized video recommender system, has the potential to improve the learning experience.
  • Item
    Text-to-Ontology Mapping via Natural Language Processing with Application to Search for Relevant Ontologies in Catalysis †
    (Basel : MDPI, 2023) Korel, Lukáš; Yorsh, Uladzislau; Behr, Alexander S.; Kockmann, Norbert; Holeňa, Martin
    The paper presents a machine-learning based approach to text-to-ontology mapping. We explore a possibility of matching texts to the relevant ontologies using a combination of artificial neural networks and classifiers. Ontologies are formal specifications of the shared conceptualizations of application domains. While describing the same domain, different ontologies might be created by different domain experts. To enhance the reasoning and data handling of concepts in scientific papers, finding the best fitting ontology regarding description of the concepts contained in a text corpus. The approach presented in this work attempts to solve this by selection of a representative text paragraph from a set of scientific papers, which are used as data set. Then, using a pre-trained and fine-tuned Transformer, the paragraph is embedded into a vector space. Finally, the embedded vector becomes classified with respect to its relevance regarding a selected target ontology. To construct representative embeddings, we experiment with different training pipelines for natural language processing models. Those embeddings in turn are later used in the task of matching text to ontology. Finally, the result is assessed by compressing and visualizing the latent space and exploring the mappings between text fragments from a database and the set of chosen ontologies. To confirm the differences in behavior of the proposed ontology mapper models, we test five statistical hypotheses about their relative performance on ontology classification. To categorize the output from the Transformer, different classifiers are considered. These classifiers are, in detail, the Support Vector Machine (SVM), k-Nearest Neighbor, Gaussian Process, Random Forest, and Multilayer Perceptron. Application of these classifiers in a domain of scientific texts concerning catalysis research and respective ontologies, the suitability of the classifiers is evaluated, where the best result was achieved by the SVM classifier.