Search Results

Now showing 1 - 4 of 4
  • Item
    Number size distributions and seasonality of submicron particles in Europe 2008–2009
    (München : European Geopyhsical Union, 2011) Asmi, A.; Wiedensohler, A.; Laj, P.; Fjaeraa, A.-M.; Sellegri, K.; Birmili, W.; Weingartner, E.; Baltensperger, U.; Zdimal, V.; Zikova, N.; Putaud, J.-P.; Marinoni, A.; Tunved, P.; Hansson, H.-C.; Fiebig, M.; Kivekäs, N.; Lihavainen, H.; Asmi, E.; Ulevicius, V.; Aalto, P.P.; Swietlicki, E.; Kristensson, A.; Mihalopoulos, N.; Kalivitis, N.; Kalapov, I.; Kiss, G.; de Leeuw, G.; Henzing, B.; Harrison, R.M.; Beddows, D.; O'Dowd, C.; Jennings, S.G.; Flentje, H.; Weinhold, K.; Meinhardt, F.; Ries, L.; Kulmala, M.
    Two years of harmonized aerosol number size distribution data from 24 European field monitoring sites have been analysed. The results give a comprehensive overview of the European near surface aerosol particle number concentrations and number size distributions between 30 and 500 nm of dry particle diameter. Spatial and temporal distribution of aerosols in the particle sizes most important for climate applications are presented. We also analyse the annual, weekly and diurnal cycles of the aerosol number concentrations, provide log-normal fitting parameters for median number size distributions, and give guidance notes for data users. Emphasis is placed on the usability of results within the aerosol modelling community. We also show that the aerosol number concentrations of Aitken and accumulation mode particles (with 100 nm dry diameter as a cut-off between modes) are related, although there is significant variation in the ratios of the modal number concentrations. Different aerosol and station types are distinguished from this data and this methodology has potential for further categorization of stations aerosol number size distribution types. The European submicron aerosol was divided into characteristic types: Central European aerosol, characterized by single mode median size distributions, unimodal number concentration histograms and low variability in CCN-sized aerosol number concentrations; Nordic aerosol with low number concentrations, although showing pronounced seasonal variation of especially Aitken mode particles; Mountain sites (altitude over 1000 m a.s.l.) with a strong seasonal cycle in aerosol number concentrations, high variability, and very low median number concentrations. Southern and Western European regions had fewer stations, which decreases the regional coverage of these results. Aerosol number concentrations over the Britain and Ireland had very high variance and there are indications of mixed air masses from several source regions; the Mediterranean aerosol exhibit high seasonality, and a strong accumulation mode in the summer. The greatest concentrations were observed at the Ispra station in Northern Italy with high accumulation mode number concentrations in the winter. The aerosol number concentrations at the Arctic station Zeppelin in Ny-\AA lesund in Svalbard have also a strong seasonal cycle, with greater concentrations of accumulation mode particles in winter, and dominating summer Aitken mode indicating more recently formed particles. Observed particles did not show any statistically significant regional work-week or weekday related variation in number concentrations studied. Analysis products are made for open-access to the research community, available in a freely accessible internet site. The results give to the modelling community a reliable, easy-to-use and freely available comparison dataset of aerosol size distributions.
  • Item
    Atmospheric data over a solar cycle: No connection between galactic cosmic rays and new particle formation
    (München : European Geopyhsical Union, 2010) Kulmala, M.; Riipinen, I.; Nieminen, T.; Hulkkonen, M.; Sogacheva, L.; Manninen, H.E.; Paasonen, P.; Petäjä, T.; Dal Maso, M.; Aalto, P.P.; Viljanen, A.; Usoskin, I.; Vainio, R.; Mirme, S.; Mirme, A.; Minikin, A.; Petzold, A.; Hõrrak, U.; Plaß-Dülmer, C.; Birmili, W.; Kerminen, V.-M.
    Aerosol particles affect the Earth's radiative balance by directly scattering and absorbing solar radiation and, indirectly, through their activation into cloud droplets. Both effects are known with considerable uncertainty only, and translate into even bigger uncertainties in future climate predictions. More than a decade ago, variations in galactic cosmic rays were suggested to closely correlate with variations in atmospheric cloud cover and therefore constitute a driving force behind aerosol-cloud-climate interactions. Later, the enhancement of atmospheric aerosol particle formation by ions generated from cosmic rays was proposed as a physical mechanism explaining this correlation. Here, we report unique observations on atmospheric aerosol formation based on measurements at the SMEAR II station, Finland, over a solar cycle (years 1996–2008) that shed new light on these presumed relationships. Our analysis shows that none of the quantities related to aerosol formation correlates with the cosmic ray-induced ionisation intensity (CRII). We also examined the contribution of ions to new particle formation on the basis of novel ground-based and airborne observations. A consistent result is that ion-induced formation contributes typically significantly less than 10% to the number of new particles, which would explain the missing correlation between CRII and aerosol formation. Our main conclusion is that galactic cosmic rays appear to play a minor role for atmospheric aerosol formation events, and so for the connected aerosol-climate effects as well.
  • Item
    Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR)
    (Milton Park : Taylor & Francis, 2001) Kulmala, M.; Hämeri, K.; Aalto, P.P.; Mäkelä, J.M.; Pirjola, L.; Nilsson, E. Douglas; Buzorius, G.; Rannik, Ü.; Dal Maso, M.; Seidl, W.; Hoffman, T.; Janson, R.; Hansson, H.-C.; Viisanen, Y.; Laaksonen, A.; O’dowd, C.D.
    Aerosol formation and subsequent particle growth in ambient air have been frequently observed at a boreal forest site (SMEAR II station) in Southern Finland. The EU funded project BIOFOR (Biogenic aerosol formation in the boreal forest) has focused on: (a) determination of formation mechanisms of aerosol particles in the boreal forest site; (b) verification of emissions of secondary organic aerosols from the boreal forest site; and (c) quantification of the amount of condensable vapours produced in photochemical reactions of biogenic volatile organic compounds (BVOC) leading to aerosol formation. The approach of the project was to combine the continuous measurements with a number of intensive field studies. These field studies were organised in three periods, two of which were during the most intense particle production season and one during a non-event season. Although the exact formation route for 3 nm particles remains unclear, the results can be summarised as follows: Nucleation was always connected to Arctic or Polar air advecting over the site, giving conditions for a stable nocturnal boundary layer followed by a rapid formation and growth of a turbulent convective mixed layer closely followed by formation of new particles. The nucleation seems to occur in the mixed layer or entrainment zone. However two more prerequisites seem to be necessary. A certain threshold of high enough sulphuric acid and ammonia concentrations is probably needed as the number of newly formed particles was correlated with the product of the sulphuric acid production and the ammonia concentrations. No such correlation was found with the oxidation products of terpenes. The condensation sink, i.e., effective particle area, is probably of importance as no nucleation was observed at high values of the condensation sink. From measurement of the hygroscopic properties of the nucleation particles it was found that inorganic compounds and hygroscopic organic compounds contributed both to the particle growth during daytime while at night time organic compounds dominated. Emissions rates for several gaseous compounds was determined. Using four independent ways to estimate the amount of the condensable vapour needed for observed growth of aerosol particles we get an estimate of 2–10×107 vapour molecules cm−3. The estimations for source rate give 7.5–11×104 cm−3 s−1. These results lead to the following conclusions: The most probable formation mechanism is ternary nucleation (water-sulphuric acid-ammonia). After nucleation, growth into observable sizes (~3 nm) is required before new particles appear. The major part of this growth is probably due to condensation of organic vapours. However, there is lack of direct proof of this phenomenon because the composition of 1–5 nm size particles is extremely difficult to determine using the present state-of-art instrumentation.
  • Item
    Variability of air ion concentrations in urban Paris
    (München : European Geopyhsical Union, 2015) Dos Santos, V.N.; Herrmann, E.; Manninen, H.E.; Hussein, T.; Hakala, J.; Nieminen, T.; Aalto, P.P.; Merkel, M.; Wiedensohler, A.; Kulmala, M.; Petäjä, T.; Hämeri, K.
    Air ion concentrations influence new particle formation and consequently the global aerosol as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics of new particle formation events (NPF) in the megacity of Paris, France, within the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) project. We measured air ion number size distributions (0.8–42 nm) with an air ion spectrometer and fine particle number concentrations (> 6 nm) with a twin differential mobility particle sizer in an urban site of Paris between 26 June 2009 and 4 October 2010. Air ions were size classified as small (0.8–2 nm), intermediate (2–7 nm), and large (7–20 nm). The median concentrations of small and large ions were 670 and 680 cm−3, respectively, (sum of positive and negative polarities), whereas the median concentration of intermediate ions was only 20 cm−3, as these ions were mostly present during new particle formation bursts, i.e. when gas-to-particle conversion produced fresh aerosol particles from gas phase precursors. During peaks in traffic-related particle number, the concentrations of small and intermediate ions decreased, whereas the concentrations of large ions increased. Seasonal variations affected the ion population differently, with respect to their size and polarity. NPF was observed in 13 % of the days, being most frequent in spring and late summer (April, May, July, and August). The results also suggest that NPF was favoured on the weekends in comparison to workdays, likely due to the lower levels of condensation sinks in the mornings of weekends (CS weekdays 09:00: 18 × 10−3 s−1; CS weekend 09:00: 8 × 10−3 s−1). The median growth rates (GR) of ions during the NPF events varied between 3 and 7 nm h−1, increasing with the ion size and being higher on workdays than on weekends for intermediate and large ions. The median GR of small ions on the other hand were rather similar on workdays and weekends. In general, NPF bursts changed the diurnal cycle of particle number as well as intermediate and large ions by causing an extra peak between 09:00 and 14:00. On average, during the NPF bursts the concentrations of intermediate ions were 8.5–10 times higher than on NPF non-event days, depending on the polarity, and the concentrations of large ions and particles were 1.5–1.8 and 1.2 times higher, respectively. Because the median concentrations of intermediate ions were considerably higher on NPF event days in comparison to NPF non-event days, the results indicate that intermediate ion concentrations could be used as an indication for NPF in Paris. The results suggest that NPF was a source of ions and aerosol particles in Paris and therefore contributed to both air quality degradation and climatic effects, especially in the spring and summer.