Search Results

Now showing 1 - 3 of 3
  • Item
    Microbiome-based biotechnology for reducing food loss post harvest
    (Amsterdam [u.a.] : Elsevier Science, 2022) Wassermann, Birgit; Abdelfattah, Ahmed; Cernava, Tomislav; Wicaksono, Wisnu; Berg, Gabriele
    Microbiomes have an immense potential to enhance plant resilience to various biotic and abiotic stresses. However, intrinsic microbial communities respond to changes in their host's physiology and environment during plant's life cycle. The potential of the inherent plant microbiome has been neglected for a long time, especially for the postharvest period. Currently, close to 50% of all produced fruits and vegetables are lost either during production or storage. Biological control of spoilage and storage diseases is still lacking sufficiency. Today, novel multiomics technologies allow us to study the microbiome and its responses on a community level, which will help to advance current classic approaches and develop more effective and robust microbiome-based solutions for fruit and vegetable storability, quality, and safety.
  • Item
    Plant genotype influence the structure of cereal seed fungal microbiome
    (Lausanne : Frontiers Media, 2023) Malacrinò, Antonino; Abdelfattah, Ahmed; Belgacem, Imen; Schena, Leonardo
    Plant genotype is a crucial factor for the assembly of the plant-associated microbial communities. However, we still know little about the variation of diversity and structure of plant microbiomes across host species and genotypes. Here, we used six species of cereals (Avena sativa, Hordeum vulgare, Secale cereale, Triticum aestivum, Triticum polonicum, and Triticum turgidum) to test whether the plant fungal microbiome varies across species, and whether plant species use different mechanisms for microbiome assembly focusing on the plant ears. Using ITS2 amplicon metagenomics, we found that host species influences the diversity and structure of the seed-associated fungal communities. Then, we tested whether plant genotype influences the structure of seed fungal communities across different cultivars of T. aestivum (Aristato, Bologna, Rosia, and Vernia) and T. turgidum (Capeiti, Cappelli, Mazzancoio, Trinakria, and Timilia). We found that cultivar influences the seed fungal microbiome in both species. We found that in T. aestivum the seed fungal microbiota is more influenced by stochastic processes, while in T. turgidum selection plays a major role. Collectively, our results contribute to fill the knowledge gap on the wheat seed microbiome assembly and, together with other studies, might contribute to understand how we can manipulate this process to improve agriculture sustainability.
  • Item
    Missing symbionts – emerging pathogens? Microbiome management for sustainable agriculture
    ([Dordrecht] : Springer Netherlands, 2023) Berg, Gabriele; Schweitzer, Matthias; Abdelfattah, Ahmed; Cernava, Tomislav; Wassermann, Birgit
    Plant diversification and co-evolution shaped the plant microbiome and vice versa. This resulted in a specific composition of the plant microbiome and a strong connection with the host in terms of functional interplay. Symbionts are part of the microbiota, and important for the plant’s germination and growth, nutrition, as well as stress protection. However, human activities in the Anthropocene are linked to a significant shift of diversity, evenness and specificity of the plant microbiota. In addition, and very importantly, many plant symbionts are missing or no longer functional. It will require targeted microbiome management to support and reintroduce them. In future agriculture, we should aim at replacing harmful chemicals in the field, as well as post-harvest, by using precision microbiome engineering. This is because the plant microbiome is connected across systems and crucial for human and planetary health. This commentary aims to inspire holistic studies for the development of solutions for sustainable agriculture in framework of the One Health and the Planetary Health concepts.