Search Results

Now showing 1 - 8 of 8
  • Item
    Cryo-printed microfluidics enable rapid prototyping for optical-cell analysis
    (Heidelberg : Springer, 2022) Garmasukis, Rokas; Hackl, Claudia; Dusny, Christian; Elsner, Christian; Charvat, Ales; Schmid, Andreas; Abel, Bernd
    This paper highlights an innovative, low-cost rapid-prototyping method for generating microfluidic chips with extraordinary short fabrication times of only a few minutes. Microchannels and inlet/outlet ports are created by controlled deposition of aqueous microdroplets on a cooled surface resulting in printed ice microstructures, which are in turn coated with a UV-curable acrylic cover layer. Thawing leaves an inverse imprint as a microchannel structure. For an exemplary case, we applied this technology for creating a microfluidic chip for cell-customized optical-cell analysis. The chip design includes containers for cell cultivation and analysis. Container shape, length, position, and angle relative to the main channel were iteratively optimized to cultivate and analyze different cell types. With the chip, we performed physiological analyses of morphologically distinct prokaryotic Corynebacterium glutamicum DM1919, eukaryotic Hansenula polymorpha RB11 MOX-GFP, and phototrophic Synechocystis sp. PCC 6803 cells via quantitative time-lapse fluorescence microscopy. The technology is not limited to rapid prototyping of complex biocompatible microfluidics. Further exploration may include printing with different materials other than water, printing on other substrates in-situ biofunctionalization, the inclusion of electrodes and many other applications.
  • Item
    A study on the material properties of novel PEGDA/gelatin hybrid hydrogels polymerized by electron beam irradiation
    (Lausanne : Frontiers Media, 2023) Şener Raman, Tuğçe; Kuehnert, Mathias; Daikos, Olesya; Scherzer, Tom; Krömmelbein, Catharina; Mayr, Stefan G.; Abel, Bernd; Schulze, Agnes
    Gelatin-based hydrogels are highly desirable biomaterials for use in wound dressing, drug delivery, and extracellular matrix components due to their biocompatibility and biodegradability. However, insufficient and uncontrollable mechanical properties and degradation are the major obstacles to their application in medical materials. Herein, we present a simple but efficient strategy for a novel hydrogel by incorporating the synthetic hydrogel monomer polyethylene glycol diacrylate (PEGDA, offering high mechanical stability) into a biological hydrogel compound (gelatin) to provide stable mechanical properties and biocompatibility at the resulting hybrid hydrogel. In the present work, PEGDA/gelatin hybrid hydrogels were prepared by electron irradiation as a reagent-free crosslinking technology and without using chemical crosslinkers, which carry the risk of releasing toxic byproducts into the material. The viscoelasticity, swelling behavior, thermal stability, and molecular structure of synthesized hybrid hydrogels of different compound ratios and irradiation doses were investigated. Compared with the pure gelatin hydrogel, 21/9 wt./wt. % PEGDA/gelatin hydrogels at 6 kGy exhibited approximately up to 1078% higher storage modulus than a pure gelatin hydrogel, and furthermore, it turned out that the mechanical stability increased with increasing irradiation dose. The chemical structure of the hybrid hydrogels was analyzed by Fourier-transform infrared (FTIR) spectroscopy, and it was confirmed that both compounds, PEGDA and gelatin, were equally present. Scanning electron microscopy images of the samples showed fracture patterns that confirmed the findings of viscoelasticity increasing with gelatin concentration. Infrared microspectroscopy images showed that gelatin and PEGDA polymer fractions were homogeneously mixed and a uniform hybrid material was obtained after electron beam synthesis. In short, this study demonstrates that both the presence of PEGDA improved the material properties of PEGDA/gelatin hybrid hydrogels and the resulting properties are fine-tuned by varying the irradiation dose and PEGDA/gelatin concentration.
  • Item
    Investigating the morphology of bulk heterojunctions by laser photoemission electron microscopy
    (Amsterdam [u.a.] : Elsevier Science, 2022) Niefind, Falk; Shivhare, Rishi; Mannsfeld, Stefan C.B.; Abel, Bernd; Hambsch, Mike
    The nanoscale morphology of bulk heterojunctions is highly important for the charge dissociation and transport in organic solar cells and ultimately defines the performance of the cell. The visualization of this nano-morphology in terms of domain size and polymer orientation in a fast and straightforward way is therefore of great interest to evaluate the suitability of a film for efficient solar cells. Here, we demonstrate that the morphology of different blends of poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) can be imaged and analyzed by employing photoemission electron microscopy.
  • Item
    On-chip mass spectrometric analysis in non-polar solvents by liquid beam infrared matrix-assisted laser dispersion/ionization
    (Berlin [u.a.] : Springer, 2021) Urban, Raphael D.; Fischer, Tillmann G.; Charvat, Ales; Wink, Konstantin; Krafft, Benjamin; Ohla, Stefan; Zeitler, Kirsten; Abel, Bernd; Belder, Detlev
    By the on-chip integration of a droplet generator in front of an emitter tip, droplets of non-polar solvents are generated in a free jet of an aqueous matrix. When an IR laser irradiates this free liquid jet consisting of water as the continuous phase and the non-polar solvent as the dispersed droplet phase, the solutes in the droplets are ionized. This ionization at atmospheric pressure enables the mass spectrometric analysis of non-polar compounds with the aid of a surrounding aqueous matrix that absorbs IR light. This works both for non-polar solvents such as n-heptane and for water non-miscible solvents like chloroform. In a proof of concept study, this approach is applied to monitor a photooxidation of N-phenyl-1,2,3,4-tetrahydroisoquinoline. By using water as an infrared absorbing matrix, analytes, dissolved in non-polar solvents from reactions carried out on a microchip, can be desorbed and ionized for investigation by mass spectrometry.
  • Item
    Mixed-ligand lanthanide complexes supported by ditopic bis(imino-methyl)-phenol/calix[4]arene macrocycles: synthesis, structures, and luminescence properties of [Ln2(L2)(MeOH)2] (Ln = La, Eu, Tb, Yb)
    (London : Soc., 2020) Ullmann, Steve; Hahn, Peter; Mini, Parvathy; Tuck, Kellie L.; Kahnt, Axel; Abel, Bernd; Gutierrez Suburu, Matias E.; Strassert, Cristian A.; Kersting, Berthold
    The lanthanide binding ability of a macrocyclic ligand H6L2 comprising two bis(iminomethyl)phenol and two calix[4]arene units has been studied. H6L2 is a ditopic ligand which provides dinuclear neutral complexes of composition [Ln2(L2)(MeOH)2] (Ln = La (1), Eu (2), Tb (3), and Yb (4)) in very good yield. X-ray crystal structure analyses for 2 and 3 show that (L2)6- accommodates two seven coordinated lanthanide ions in a distorted monocapped trigonal prismatic/octahedral coordination environment. UV-vis spectroscopic titrations performed with La3+, Eu3+, Tb3+ and Yb3+ ions in mixed MeOH/CH2Cl2 solution (I = 0.01 M NBu4PF6) reveal that a 2 : 1 (metal : ligand) stoichiometry is present in solution, with log K11 and K21 values ranging from 5.25 to 6.64. The ratio α = K11/K21 of the stepwise formation constants for the mononuclear (L2 + M = ML2, log K11) and the dinuclear complexes (ML2 + M = M2L2, log K21) was found to be invariably smaller than unity indicating that the binding of the first Ln3+ ion augments the binding of the second Ln3+ ion. The present complexes are less luminescent than other seven-coordinated Eu and Tb complexes, which can be traced to vibrational relaxation of excited EuIII and TbIII states by the coligated MeOH and H2O molecules and/or low-lying ligand-to-metal charge-transfer (LMCT) states. © 2020 The Royal Society of Chemistry.
  • Item
    Role of Reaction Intermediate Diffusion on the Performance of Platinum Electrodes in Solid Acid Fuel Cells
    (Basel : MDPI, 2021) Lorenz, Oliver; Kühne, Alexander; Rudolph, Martin; Diyatmika, Wahyu; Prager, Andrea; Gerlach, Jürgen W.; Griebel, Jan; Winkler, Sara; Lotnyk, Andriy; Anders, André; Abel, Bernd
    Understanding the reaction pathways for the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR) is the key to design electrodes for solid acid fuel cells (SAFCs). In general, electrochemical reactions of a fuel cell are considered to occur at the triple-phase boundary where an electrocatalyst, electrolyte and gas phase are in contact. In this concept, diffusion processes of reaction intermediates from the catalyst to the electrolyte remain unconsidered. Here, we unravel the reaction pathways for open-structured Pt electrodes with various electrode thicknesses from 15 to 240 nm. These electrodes are characterized by a triple-phase boundary length and a thickness-depending double-phase boundary area. We reveal that the double-phase boundary is the active catalytic interface for the HOR. For Pt layers ≤ 60 nm, the HOR rate is rate-limited by the processes at the gas/catalyst and/or the catalyst/electrolyte interface while the hydrogen surface diffusion step is fast. For thicker layers (>60 nm), the diffusion of reaction intermediates on the surface of Pt be-comes the limiting process. For the ORR, the predominant reaction pathway is via the triple-phase boundary. The double-phase boundary contributes additionally with a diffusion length of a few nanometers. Based on our results, we propose that the molecular reaction mechanism at the electrode interfaces based upon the triple-phase boundary concept may need to be extended to an effective area near the triple-phase boundary length to include all catalytically relevant diffusion processes of the reaction intermediates. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Effect of morphology on the photoelectrochemical activity of TiO2 self-organized nanotube arrays
    (Basel : MDPI, 2020) Ennaceri, Houda; Fischer, Kristina; Hanus, Kevin; Chemseddine, Abdelkrim; Prager, Andrea; Griebel, Jan; Kühnert, Mathias; Schulze, Agnes; Abel, Bernd
    In the present work, highly ordered titanium dioxide (TiO2) nanotube anodes were grown using a rapid anodization process. The photoelectrochemical performances of these electrodes strongly depend on the anodization conditions. Parameters such as electrolyte composition, anodization potential and anodization time are shown to affect the geometrical parameters of TiO2 nanotubes. The optimal anodization parameters are determined by photocurrent measurements, linear sweep voltammetry and electrochemical impedance spectroscopy. The thickness of the tube wall and its homogeneity is shown to strongly depend on the anodization potential, and the formation mechanism is discussed. This study permits the optimization of the photocurrent density and contributes to further improvement of the photoelectrochemical water-splitting performance of TiO2 nanotube photoelectrodes. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Green-Emissive Zn2+ Complex Supported by a Macrocyclic Schiff-Base/Calix[4]arene-Ligand: Crystallographic and Spectroscopic Characterization
    (Weinheim : Wiley-VCH, 2021) Ullmann, Steve; Börner, Martin; Kahnt, Axel; Abel, Bernd; Kersting, Berthold
    The macrocyclic calix[4]arene ligand H2L comprises two non-fluorescent 2,6-bis-(iminomethyl)phenolate chromophores, which show a chelation-enhanced fluorescence enhancement upon Zn2+ ion complexation. Macrocyclic [ZnL] complexes aggregate in the absence of external coligands via intermolecular Zn−N bonds to give dimeric [ZnL]2 structures comprising two five-coordinated Zn2+ ions. The absorption and emission wavelengths are bathochromically shifted upon going from the liquid (λmax,abs (CH2Cl2)=404 nm, λmax,em (CH2Cl2)=484 nm) to the solid state (λmax,abs=424 nm (4 wt%, BaSO4 pellet), λmax,em=524 nm (neat solid)). Insights into the electronic nature of the UV-vis transitions were obtained with time-dependent density functional theory (TD-DFT) calculations for a truncated model complex.